首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In common with other plant symbionts, Frankia spp., the actinomycete N2-fixing symbionts of certain nonleguminous woody plants, synthesize two glutamine synthetases, GSI and GSII. DNA encoding the Bradyrhizobium japonicum gene for GSII (glnII) hybridized to DNA from three Frankia strains. B. japonicum glnII was used as a probe to clone the glnII gene from a size-selected KpnI library of Frankia strain CpI1 DNA. The region corresponding to the Frankia sp. strain CpI1 glnII gene was sequenced, and the amino acid sequence was compared with that of the GS gene from the pea and glnII from B. japonicum. The Frankia glnII gene product has a high degree of similarity with both GSII from B. japonicum and GS from pea, although the sequence was about equally similar to both the bacterial and eucaryotic proteins. The Frankia glnII gene was also capable of complementing an Escherichia coli delta glnA mutant when transcribed from the vector lac promoter, but not when transcribed from the Frankia promoter. GSII produced in E. coli was heat labile, like the enzyme produced in Frankia sp. strain CpI1 but unlike the wild-type E. coli enzyme.  相似文献   

2.
L V Wray  S H Fisher 《Gene》1988,71(2):247-256
The Streptomyces coelicolor glutamine synthetase (GS) structural gene (glnA) was cloned by complementing the glutamine growth requirement of an Escherichia coli strain containing a deletion of its glnALG operon. Expression of the cloned S. coelicolor glnA gene in E. coli cells was found to require an E. coli plasmid promoter. The nucleotide sequence of an S. coelicolor 2280-bp DNA segment containing the glnA gene was determined and the complete glnA amino acid sequence deduced. Comparison of the derived S. coelicolor GS protein sequence with the amino acid sequences of GS from other bacteria suggests that the S. coelicolor GS protein is more similar to the GS proteins from Gram-negative bacteria than it is with the GS proteins from two Gram-positive bacteria, Bacillus subtilis and Clostridium acetobutylicum.  相似文献   

3.
4.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

5.
Rhizobium leguminosarum, biovar viceae, strain RCC1001 contains two glutamine synthetase activities, GSI and GSII. We report here the identification of glnA, the structural gene for GSI. A 2 kb fragment of DNA was shown to complement the Gln- phenotype of Klebsiella pneumoniae glnA mutant strains. DNA sequence analysis revealed an open reading frame (ORF) of 469 codons specifying a polypeptide of 52,040 daltons. Its deduced amino acid sequence was found to be highly homologous to other glutamine synthetase sequences. This ORF was expressed in Escherichia coli minicells and the corresponding polypeptide reacted with an antiserum raised against GSI. Upstream of glnA we found an ORF of 111 codons (ORF111) preceded by the consensus sequence for an ntrA-dependent promoter. Minicells experiments showed a protein band, with a molecular weight in good agreement with that (10,469) deduced from the nucleotide sequence. On the basis of homology studies we discuss the possibility that the product of ORF111 is equivalent to the PII protein of E. coli and plays a similar role in regulation of nitrogen metabolism.  相似文献   

6.
Glutamine synthetase is encoded by the glnA gene of Escherichia coli and catalyzes the formation of glutamine from ATP, glutamate, and ammonia. A 1922-base pair fragment from a cDNA containing the glnA structural gene for E. coli glutamine synthetase has been sequenced. An open reading frame of 1404 base pairs encodes a protein of 468 amino acid residues with a calculated molecular weight of 51,814. With few exceptions, the amino acid sequence deduced from the DNA sequence agreed very well with the amino acid sequences of several peptides reported previously. The secondary structure predicted for the E. coli enzyme has approximately 36% of the residues in alpha-helices which is in agreement with calculations of approximately 39% based on optical rotatory dispersion data. Comparison of the amino acid sequences of glutamine synthetase from E. coli (468 amino acids) and Anabaena (473 amino acids) (Turner, N. E., Robinson, S. T., and Haselkorn, R. (1983) Nature 306, 337-342) indicates that 260 amino acids are identical and 80 are of the same type (polar or nonpolar) when aligned for maximum homology. Several homologous regions of these two enzymes exist, including the sites of adenylylation and oxidative modification, but the regulation of each enzyme is different.  相似文献   

7.
H Bozouklian  C Elmerich 《Biochimie》1986,68(10-11):1181-1187
The complete nucleotide sequence of the glnA gene, encoding the glutamine synthetase subunit of Azospirillum brasilense Sp7, was established. This is the first Azospirillum gene sequenced. The gene encodes a 468 residue polypeptide of MW 51,917. The similarity coefficient (SAB) between the polypeptidic sequence of Azospirillum and Anabaena 7120, which is the only other glnA sequence available, is 58%. No significant homology with E. coli canonical and ntr promoters, or with the promoter region of the Anabaena glnA gene was found. When fused to an E. coli promoter, the gene could be translated in E. coli, despite a very biased codon usage and an atypical Shine-Dalgarno sequence.  相似文献   

8.
A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.  相似文献   

9.
Maize glutamine synthetase cDNA clones were isolated by genetic selection for functional rescue of an Escherichia coli delta glnA mutant growing on medium lacking glutamine. The Black Mexican Sweet cDNA library used in this study was constructed in pUC13 such that cDNA sense strands were transcribed under the control of the lac promoter. E. coli delta glnA cells were transformed with cDNA library plasmid DNA, grown briefly in rich medium to allow phenotypic expression of the cDNAs and the pUC13 ampr gene, and challenged to grow on agar medium lacking glutamine. Large numbers of glutamine synthetase cDNA clones have been identified in individual 150-mm Petri dishes; all characterized cDNA clones carry complete coding sequences. Two cDNAs identical except for different 5' and 3' termini have been sequenced. The major open reading frame predicts a protein with an amino acid sequence that exhibits striking similarity to the amino acid sequences of the predicted products of previously sequenced eukaryotic glutamine synthetase cDNAs and genes. In addition, the maize glutamine synthetase cDNAs were shown to contain a 5' mini-ORF of 29 codons separated by 37 nucleotide pairs from the major ORF. This mini-ORF was shown not to be essential for the functional rescue of the E. coli delta glnA mutant. Expression of the cDNAs in E. coli is presumed to be due to the function of a polycistronic hybrid lac messenger RNA or translational fusions encoded by the pUC plasmids. Proteins of the expected sizes encoded by two different pUC clones were shown to react with antibodies to tobacco glutamine synthetase.  相似文献   

10.
A 3.3-kb BamHI fragment of Lactobacillus delbrueckii subsp. bulgaricus DNA was cloned and sequenced. It complements an Escherichia coli glnA deletion strain and hybridizes strongly to a DNA containing the Bacillus subtilis glnA gene. DNA sequence analysis of the L. delbrueckii subsp. bulgaricus DNA showed it to contain the glnA gene encoding class I glutamine synthetase, as judged by extensive homology with other prokaryotic glnA genes. The sequence suggests that the enzyme encoded in this gene is not controlled by adenylylation. Based on a comparison of glutamine synthetase sequences, L. delbrueckii subsp. bulgaricus is much closer to gram-positive eubacteria, especially Clostridium acetobutylicum, than to gram-negative eubacteria and archaebacteria. The fragment contains another open reading frame encoding a protein of unknown function consisting of 306 amino acids (ORF306), which is also present upstream of glnA of Bacillus cereus. In B. cereus, a repressor gene, glnR, is found between the open reading frame and glnA. Two proteins encoded by the L. delbrueckii subsp. bulgaricus gene were identified by the maxicell method; the sizes of these proteins are consistent with those of the open reading frames of ORF306 and glnA. The lack of a glnR gene in the L. delbrueckii subsp. bulgaricus DNA in this position may indicate a gene rearrangement or a different mechanism of glnA gene expression.  相似文献   

11.
12.
We have cloned and characterized three distinct Rhizobium meliloti loci involved in glutamine biosynthesis (glnA, glnII, and glnT). The glnA locus shares DNA homology with the glnA gene of Klebsiella pneumoniae, encodes a 55,000-dalton monomer subunit of the heat-stable glutamine synthetase (GS) protein (GSI), and complemented an Escherichia coli glnA mutation. The glnII locus shares DNA homology with the glnII gene of Bradyrhizobium japonicum and encodes a 36,000-dalton monomer subunit of the heat-labile GS protein (GSII). The glnT locus shares no DNA homology with either the glnA or glnII gene and complemented a glnA E. coli strain. The glnT locus codes for an operon encoding polypeptides of 57,000, 48,000, 35,000, 29,000, and 28,000 daltons. glnA and glnII insertion mutants were glutamine prototrophs, lacked the respective GS form (GSI or GSII), grew normally on different nitrogen sources (Asm+), and induced normal, nitrogen-fixing nodules on Medicago sativa plants (Nod+ Fix+). A glnA glnII double mutant was a glutamine auxotroph (Gln-), lacked both GSI and GSII forms, but nevertheless induced normal Fix+ nodules. glnT insertion mutants were prototrophs, contained both GSI and GSII forms, grew normally on different N sources, and induced normal Fix+ nodules. glnII and glnT, but not glnA, expression in R. meliloti was regulated by the nitrogen-regulatory genes ntrA and ntrC and was repressed by rich N sources such as ammonium and glutamine.  相似文献   

13.
14.
15.
16.
The glutamine synthetase (GS) gene from Bacillus subtilis PCI 219 was cloned in Escherichia coli using the vector pBR329. A plasmid, pSGS2, was isolated from a glnA+ transformant and the cloned GS gene was found to be located in a 3.6 kb DNA fragment. The nucleotide sequence of a 1.8 kb segment encoding the GS was determined. This segment showed an open reading frame which would encode a polypeptide of 444 amino acids. The amino acid sequence of this GS gene product has higher homology with that of the Clostridium acetobutylicum GS than that of the E. coli GS.  相似文献   

17.
The glnB gene from Bradyrhizobium japonicum, the endosymbiont of soybeans (Glycine max), was isolated and sequenced, and its expression was examined under various culture conditions and in soybean nodules. The B. japonicum glnB gene encodes a 12,237-dalton polypeptide that is highly homologous to the glnB gene products from Klebsiella pneumoniae and Escherichia coli. The gene is located directly upstream from glnA (encoding glutamine synthetase), a linkage not observed in enteric bacteria. The glnB gene from B. japonicum is expressed from tandem promoters, which are differentially regulated in response to the nitrogen status of the medium. Expression from the downstream promoter involves the B. japonicum ntrC gene product (NtrC) in both free-living and symbiotic cells. Thus, glnB, a putative nitrogen-regulatory gene in B. japonicum, is itself Ntr regulated, and NtrC is active in B. japonicum cells in their symbiotic state.  相似文献   

18.
We have determined the complete nucleotide sequence of a 2.4 kb chromosomal EcoT22I-NspV fragment, containing the Bacillus cereus glnA gene (structural gene of glutamine synthetase). The deduced amino acid sequence indicates that the glutamine synthetase subunit consists of 444 amino acid residues (50,063 Da). Comparisons are made with reported amino acid sequences of glutamine synthetases from other bacteria. Upstrem of glnA we found an open reading frame of 129 codons (ORF129) preceded by the consensus sequence for a typical promoter. Maxicell experiments showed two polypeptide bands, with molecular weights in good agreement with that of glutamine synthetase and that of ORF129, in addition to vector-coded protein. It is possible that the product of this open reading frame upstream of glnA has a regulatory role in glutamine synthetase expression.  相似文献   

19.
Frankia alni CpI1 has two glutamine synthetases (GSs), GSI and GSII. The GSI gene (glnA) was isolated from a cosmid library of F. alni CpI1 DNA by heterologous probing with glnA from Streptomyces coelicolor. The glnA gene was shown to be located upstream of the GSII gene (glnII) by DNA-DNA hybridization. The nucleotide sequences of the 1,422-bp CpI1 glnA gene and of the 449-bp intervening region between glnA and glnII were determined, and the glnA amino acid sequence was deduced. In common with GSIs from other organisms, CpI1 GSI contains five conserved regions near the active site and a conserved tyrosine at the adenylylation site. F. alni CpI1 glnA complemented the glutamine growth requirement of the Escherichia coli glnA deletion strain YMC11 but only when expressed from an E. coli lac promoter. While the functional significance of maintaining two GSs adjacent to one another remains unclear, this arrangement in F. alni provides support for the recently proposed origin of GSI and GSII as resulting from a gene duplication early in the evolution of life.  相似文献   

20.
The structural gene (glnA) encoding the glutamine synthetase (GS) of the extremely thermophilic eubacterium Thermotoga maritima has been cloned on a 6.0 kb HindIII DNA fragment. Sequencing of the region containing the glnA gene (1444 bp) showed an ORF encoding a polypeptide (439 residues) with an estimated mass of 50,088 Da, which shared significant homology with the GSI sequences of other Bacteria (Escherichia coli, Bacillus subtilis) and Archaea (Pyrococcus woesei, Sulfolobus solfataricus). The T. maritima glnA gene was expressed in E. coli, as shown by the ability to complement a glnA lesion in the glutamine-auxotrophic strain ET8051. The recombinant GS has been partially characterized with respect to the temperature dependence of enzyme activity, molecular mass and mode of regulation. The molecular mass of the Thermotoga GS (590,000 Da), estimated by gel filtration, was compatible with a dodecameric composition for the holoenzyme, as expected for a glutamine synthetase of the GSI type. Comparison of the amino acid sequence of T. maritima GS with those from thermophilic and mesophilic micro-organisms failed to detect any obvious features directly related to thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号