首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial electron transport is a major source of reactive oxygen species (ROS) during cardiac ischemia and reperfusion. In the isolated rabbit heart, 30 and 45 min of ischemia decrease the contents of cardiolipin and cytochrome c in subsarcolemmal mitochondria (SSM) located beneath the plasma membrane. In contrast, interfibrillar mitochondria (IFM) in the interior of the myocyte do not sustain a decrease in cardiolipin. We proposed that the depletion of cardiolipin and the accompanying cytochrome c loss during ischemia were critical events that amplified ROS production by mitochondria. The total production of H2O2 was measured in submitochondrial particles (SMP) prepared from rabbit heart SSM and IFM after 0, 15, 30, and 45 min of ischemia. With NADH as substrate, total H2O2 production was increased only in SMP from SSM after 30 and 45 min ischemia, when ischemia decreased the content of cardiolipin and cytochrome c. In contrast, ischemia did not augment H2O2 generation in SMP from IFM with preserved cardiolipin and cytochrome c content. Thus, during the evolution of ischemic injury, H2O2 production from the electron transport chain increased after depletion of cardiolipin and the loss of cytochrome c.  相似文献   

2.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

3.
The effect of reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, on the activity of cytochrome c oxidase and on the cardiolipin content in bovine heart submitochondrial particles (SMP) was studied. ROS were produced by treatment of succinate-respiring SMP with antimycin A. This treatment resulted in a large production of superoxide anion, measured by epinephrine method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to mitochondrial mediated ROS generation, led to a marked loss of cytochrome c oxidase activity and to a parallel loss of cardiolipin content. Both these effects were completely abolished by SOD+catalase. Added cardiolipin was able to almost completely restore the ROS-induced loss of cytochrome c oxidase activity. No restoration was obtained with peroxidized cardiolipin. These results demonstrate that mitochondrial mediated ROS generation affects the activity of cytochrome c oxidase via peroxidation of cardiolipin which is needed for the optimal functioning of this enzyme complex. These results may prove useful in probing molecular mechanism of ROS-induced peroxidative damage to mitochondria which have been proposed to contribute to aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   

4.
Release of cytochrome c from mitochondria is considered a critical, early event in the induction of an apoptosis cascade that ultimately leads to programmed cell death. Mitochondrial Ca(2+) loading is a trigger for the release of cytochrome c, although the molecular mechanism underlying this effect is not fully clarified. This study tested the hypothesis that distinct Ca(2+) thresholds may induce cytochrome c release from rat liver mitochondria by membrane permeability transition (MPT)-dependent and independent mechanisms. The involvement of reactive oxygen species (ROS) and cardiolipin in the Ca(2+)-induced cytochrome c release was also investigated. Cytochrome c was quantitated by a new, very sensitive, and rapid reverse-phase high performance liquid chromatography method with a detection limit of 0.1 pmol/sample. We found that a low extramitochondrial Ca(2+) level (2 microM) promoted the release of approximately 13% of the total alamethicin releasable pool of cytochrome c from mitochondria. This release was not depending of MPT; it was mediated by Ca(2+)-induced ROS production and cardiolipin peroxidation and appears to involve the voltage-dependent anion channel. High extramitochondrial Ca(2+) level (20 microM) promoted approximately 45% of the total releasable pool of cytochrome c. This process was MPT-dependent and was also mediated by ROS and cardiolipin. It is suggested that distinct Ca(2+) levels may determine the mode and the amount of cytochrome c release from rat liver mitochondria. The data may help to clarify the molecular mechanism underlying the Ca(2+)-induced release of cytochrome c from rat liver mitochondria and the role played by ROS and cardiolipin in this process.  相似文献   

5.
The aim of this study was to investigate the influence of reactive oxygen species (ROS) on the activity of complex I and on the cardiolipin content in bovine heart submitochondrial particles (SMP). ROS were generated through the use of xanthine/xanthine oxidase (X/XO) system. Treatment of SMP with X/XO resulted in a large production of superoxide anion, detected by acetylated cytochrome c method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to ROS generation resulted in a marked loss of complex I activity and to parallel loss of mitochondrial cardiolipin content. Both these effects were completely abolished by SOD+catalase. Exogenous added cardiolipin was able to almost completely restore the ROS-induced loss of complex I activity. No restoration was obtained with other major phospholipid components of the mitochondrial membrane such as phosphatidylcholine and phosphatidylethanolamine, nor with peroxidized cardiolipin. These results demonstrate that ROS affect the mitochondrial complex I activity via oxidative damage of cardiolipin which is required for the functioning of this multisubunit enzyme complex. These results may prove useful in probing molecular mechanisms of ROS-induced peroxidative damage to mitochondria, which have been proposed to contribute to those pathophysiological conditions characterized by an increase in the basal production of reactive oxygen species such as aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   

6.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

7.
Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.  相似文献   

8.
The aim of this study was to investigate the effect of reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, on the activity of complex III and on the cardiolipin content in bovine-heart submitochondrial particles (SMP). ROS were produced by treatment of nicotinamide adenine dinucleotide (NADH) respiring SMP with rotenone. This treatment resulted in a production of superoxide anion, detected by the epinephrine method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to mitochondrial-mediated ROS generation resulted in a marked loss of complex III activity and in a parallel loss of mitochondrial cardiolipin content. Both these effects were completely abolished by SOD + catalase. Exogenous added cardiolipin was able to almost completely prevent the ROS-mediated loss of complex III activity. No effect was obtained with other major phospholipid components of the mitochondrial membrane such as phosphatidylcholine and phosphatidylethanolamine, or with peroxidized cardiolipin. The results demonstrate that mitochondrial-mediated ROS generation affects the activity of complex III via peroxidation of cardiolipin, which is required for the functioning of this multisubunit enzyme complex. These results may prove useful in probing molecular mechanisms of ROS-induced peroxidative damage to mitochondria, which have been proposed to contribute to those physiopathological conditions characterized by an increase in the basal production of ROS such as aging, ischemia/reperfusion and chronic degenerative diseases.  相似文献   

9.
Bax/Bak activation and cardiolipin peroxidation are essential for cytochrome c release during apoptosis, yet, the link between them remains elusive. We report that sequence of events after exposure of mouse embryonic fibroblast (MEF) cells to actinomycin D followed the order: Bax translocation → superoxide production → cardiolipin peroxidation. Genetic ablation of Bax/Bak inhibited actinomycin D induced superoxide production and cardiolipin peroxidation. Rotenone caused robust superoxide generation but did not trigger cardiolipin peroxidation in Bax/Bak double knockout MEF cells. This suggests that, in addition to participating in ROS generation, Bax/Bak play another specific role in cardiolipin oxidation. In isolated mitochondria, recombinant Bax enhanced succinate induced cardiolipin oxidation and cytochrome c release. Mitochondrial peroxidase activity, likely involved in cardiolipin peroxidation, was enhanced upon incubation with recombinant Bax. Thus, cardiolipin peroxidation may be causatively and time-dependently related to Bax/Bak effects on ROS generation and peroxidase activation of cytochrome c.  相似文献   

10.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

11.
Bid is cleaved by caspase 8 during apoptosis and the truncated Bid (tBid) translocates to mitochondria by targeting cardiolipin. Amino acids 103-162 of Bid were reported as the cardiolipin-binding domain (CBD). The EGFP-CBD fusion protein targets to mitochondria and induces apoptosis. Using [(3)H]cardiolipin, we proved that recombinant CBD binds cardiolipin similar to tBid and tBid(G94E), a mutant with a defective BH3 domain. CBD could induce cytochrome c release from isolated mitochondria, but much less potent than tBid. Free cardiolipin inhibited the CBD-induced cytochrome c release, suggesting that it may be mediated by interfering with mitochondrial cardiolipin, especially with the interaction between cytochrome c and cardiolipin. This is consistent with the findings that CBD induced cytochrome c release in Bax-deficient cells, and that CBD suppressed mitochondrial respiration through directly interfering with cardiolipin, a critical lipid involved in oxidative phosphorylation. These results indicate the functional importance of CBD in tBid-induced apoptosis.  相似文献   

12.
We are interested in the cytotoxic and proinflammatory effects of particulate pollutants in the respiratory tract. We demonstrate that methanol extracts made from diesel exhaust particles (DEP) induce apoptosis and reactive oxygen species (ROS) in pulmonary alveolar macrophages and RAW 264.7 cells. The toxicity of these organic extracts mimics the cytotoxicity of the intact particles and could be suppressed by the synthetic sulfhydryl compounds, N-acetylcysteine and bucillamine. Because DEP-induced apoptosis follows cytochrome c release, we studied the effect of DEP chemicals on mitochondrially regulated death mechanisms. Crude DEP extracts induced ROS production and perturbed mitochondrial function before and at the onset of apoptosis. This mitochondrial perturbation follows an orderly sequence of events, which commence with a change in mitochondrial membrane potential, followed by cytochrome c release, development of membrane asymmetry (annexin V staining), and propidium iodide uptake. Structural damage to the mitochondrial inner membrane, evidenced by a decrease in cardiolipin mass, leads to O-*2 generation and uncoupling of oxidative phosphorylation (decreased intracellular ATP levels). N-acetylcysteine reversed these mitochondrial effects and ROS production. Overexpression of the mitochondrial apoptosis regulator, Bcl-2, delayed but did not suppress apoptosis. Taken together, these results suggest that DEP chemicals induce apoptosis in macrophages via a toxic effect on mitochondria.  相似文献   

13.
A small amount of reactive oxygen species (ROS) is generated through aerobic respiration even under physiological conditions. Because ROS are known to have various deteriorating actions, the way cells could evade the effects of ROS in and around mitochondria would determine the fate of cells. We previously reported that Cu,Zn-superoxide dismutase (SOD1), a cytosolic enzyme, is also localized in mitochondria in various types of cells. Therefore, we undertook this study to elucidate the physiological significance of SOD1 localization in and around mitochondria. We analyzed the effects of various reagents that could modulate mitochondrial respiration, ROS metabolism, and subcellular localization of SOD1 and cytochrome c. Using rat liver mitochondria, we have shown that Ca2+, Fe2+, or long-chain fatty acids increased the mitochondrial generation of ROS and that the resulting ROS oxidized the critical thiol groups in adenine nucleotide translocase (ANT). The oxidation of ANT induced mitochondrial swelling followed by the release of SOD1 and cytochrome c. Although inhibitors of electron transport, such as rotenone, antimycin A, and KCN, also increased ROS generation, they failed to (i) oxidize the critical thiol groups in ANT, (ii) induce swelling, and (iii) release SOD1 and cytochrome c. These results suggest that the oxidation of ANT thiols and the opening of the membrane permeability transition pores induce the release of both SOD1 and cytochrome c. We demonstrated that the loss of SOD1 increases the susceptibility of mitochondria to oxidative stresses and that the simultaneous release of SOD1 enhances the vicious cycle of apoptotic reactions triggered by the released cytochrome c. Therefore, SOD1 must have important roles in protecting mitochondria from ROS-induced injury. Our data also suggest that SOD1 release parallels cytochrome c release under all conditions. We propose that intramembranously localized SOD1 is a third reagent (along with AIF) that will regulate apoptosis.  相似文献   

14.
Bid, a BH3-only pro-apoptotic member of the Bcl-2 family, is cleaved by caspase 8 in apoptosis induced by death domain receptors. The carboxyl terminus of the cleavage product, tBid, remains associated with the amino terminal fragment (nBid) after cleavage. Dissociation of tBid from nBid occurs during targeting of tBid to mitochondria. We use an in vitro system and demonstrate that cardiolipin is sufficient for the dissociation. Monolysocardiolipin, a metabolite of cardiolipin that increases in mitochondria during apoptosis, has the same affinity to tBid as cardiolipin and is also capable of inducing dissociation of tBid from nBid. In contrast, phosphatidylethanolamine could not induce dissociation of tBid from nBid. To determine the site of tBid that interacts with cardiolipin, we performed mutational analysis by eliminating the positive-charged residues in helices 4-6. None of the single mutations can abolish the ability of tBid to target to mitochondria and to induce cytochrome c release, suggesting that positive-charged residues in helices 4-6 may not be required for mitochondrial targeting of tBid.  相似文献   

15.
Mitochondria,oxidative stress and cell death   总被引:4,自引:0,他引:4  
In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death. Mitochondria-generated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin, which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of “free” cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating evidence supporting a direct link between mitochondria, oxidative stress and cell death.  相似文献   

16.
Mitochondrial complex I dysfunction has been implicated in a number of brain pathologies, putatively owing to an increased rate of reactive oxygen species (ROS) release. However, the mechanisms regulating the ROS burden are poorly understood. In this study we investigated the effect of Ca2+ loads on ROS release from rat brain mitochondria with complex I partially inhibited by rotenone. The addition of 20 nm rotenone to brain mitochondria increased ROS release. Ca2+ (100 microm) alone had no effect on ROS release, but greatly potentiated the effects of rotenone. The effect of Ca2+ was decreased by ruthenium red. Ca2+-challenged mitochondria lose about 88% of their glutathione and 46% of their cytochrome c under these conditions, although this depends only on Ca2+ loading and not complex I inhibition. ADP in combination with oligomycin decreased the loss of glutathione and cytochrome c and free radical generation. Cyclosporin A alone was ineffective in preventing these effects, but augmented the protection provided by ADP and oligomycin. Non-specific permeabilization of mitochondria with alamethicin also increased the ROS signal, but only when combined with partial inhibition of complex I. These results demonstrate that Ca2+ can greatly increase ROS release by brain mitochondria when complex I is impaired.  相似文献   

17.
Exposure of mammalian cells to oxidant stress causes early (iron catalysed) lysosomal rupture followed by apoptosis or necrosis. Enhanced intracellular production of reactive oxygen species (ROS), presumably of mitochondrial origin, is also observed when cells are exposed to nonoxidant pro-apoptotic agonists of cell death. We hypothesized that ROS generation in this latter case might promote the apoptotic cascade and could arise from effects of released lysosomal materials on mitochondria. Indeed, in intact cells (J774 macrophages, HeLa cells and AG1518 fibroblasts) the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) causes lysosomal rupture, enhanced intracellular ROS production, and apoptosis. Furthermore, in mixtures of rat liver lysosomes and mitochondria, selective rupture of lysosomes by MSDH promotes mitochondrial ROS production and cytochrome c release, whereas MSDH has no direct effect on ROS generation by purifed mitochondria. Intracellular lysosomal rupture is associated with the release of (among other constituents) cathepsins and activation of phospholipase A2 (PLA2). We find that addition of purified cathepsins B or D, or of PLA2, causes substantial increases in ROS generation by purified mitochondria. Furthermore, PLA2 - but not cathepsins B or D - causes rupture of semipurified lysosomes, suggesting an amplification mechanism. Thus, initiation of the apoptotic cascade by nonoxidant agonists may involve early release of lysosomal constituents (such as cathepsins B and D) and activation of PLA2, leading to enhanced mitochondrial oxidant production, further lysosomal rupture and, finally, mitochondrial cytochrome c release. Nonoxidant agonists of apoptosis may, thus, act through oxidant mechanisms.  相似文献   

18.
Cardiolipin oxidation is emerging as an important factor in mitochondrial dysfunction as well as in the initial phase of the apoptotic process. We have previously shown that exogenously added peroxidized cardiolipin sensitizes mitochondria to Ca2+-induced mitochondrial permeability transition (MPT) pore opening and promotes the release of cytochrome c. In this work, the effects of intramitochondrial cardiolipin peroxidation on Ca2+-induced MPT and on the cytochrome c release from mitochondria were studied. The effects of melatonin, a compound known to protect the mitochondria from oxidative damage, on both of these processes were also tested. tert-Butylhydroperoxide (t-BuOOH), a lipid-soluble peroxide that promotes lipid peroxidation, was used to induce intramitochondrial cardiolipin peroxidation. Exposure of heart mitochondria to t-BuOOH resulted in the oxidation of cardiolipin, associated with an increased sensitivity of mitochondria to Ca2+-induced MPT and with the release of cytochrome c from the mitochondria. All these processes were inhibited by micromolar concentrations of melatonin. It is proposed that melatonin inhibits cardiolipin peroxidation in mitochondria, and this effect seems to be responsible for the protection afforded by this agent against the MPT induction and cytochrome c release. Thus, manipulating the oxidation sensitivity of cardiolipin with melatonin may help to control MPT and cytochrome c release, events associated with cell death, and thus, be used for treatment of those disorders characterized by mitochondrial cardiolipin oxidation and Ca2+ overload.  相似文献   

19.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

20.
To clarify the mechanism of apoptosis of the macrophage-like cell line RAW264.7 induced by cationic liposomes, we focused on the mitochondria and investigated the changes in mitochondrial membrane potential and the release of cytochrome c following treatment of cationic liposomes composed of stearylamine (SA-liposomes). SA-liposomes induced mitochondrial membrane depolarization and also the release of cytochrome c from mitochondria. Caspase-3 was also activated by SA-liposome treatment. Pretreatment of cells with N-acetylcysteine, a scavenger of reactive oxygen species (ROS), conferred resistance to the induction of the membrane depolarization, cytochrome c release, and caspase-3 activation by SA-liposomes. These results indicated that SA-liposomes caused the apoptosis in RAW264.7 cells through the mitochondrial pathway, and ROS generation was required for this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号