首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Maternal RNA of mouse eggs and embryos was labeled by exposure of growing ovarian oocytes to 3H-uridine in vivo 8 to 16 days before ovulation and fertilization. Labeled embryos from the 1-cell stage to the blastocyst stage were collected, fixed, and autoradiographs of plastic sections prepared. The observed grain density was similar in the pronuclei and in the cytoplasm of 1-cell embryos. Knowing the volumes of nucleus and cytoplasm, it was determined that 3% of the maternal RNA was found in the pronuclei. It is suggested that some of this nuclear RNA may be stable small nuclear RNAs (e.g. U1 RNA) retained from the germinal vesicle stage through meiotic maturation. During the 2-cell stage and beyond, maternal RNA is degraded and labeled precursor is reincorporated into nuclear RNA, making it difficult to accurately quantitate the amount of nuclear maternal RNA. It is known that about one third of the total maternal RNA is lost between the 8-cell and blastocyst stages. It was found that cytoplasmic grain densities in inner and outer cells of the morula and blastocyst were not significantly different. Thus, the loss of maternal RNA does not proceed more rapidly in the differentiating trophoblast than in the inner cell mass.  相似文献   

2.
We have analyzed the assembly of the spliceosomal U4/U6 snRNP by injecting synthetic wild-type and mutant U4 RNAs into the cytoplasm of Xenopus oocytes and determining the cytoplasmic-nuclear distribution of U4 and U4/U6 snRNPs by CsCl density gradient centrifugation. Whereas the U4 snRNP was localized in both the cytoplasmic and nuclear fractions, the U4/U6 snRNP was detected exclusively in the nuclear fraction. Cytoplasmic-nuclear migration of the U4 snRNP did not depend on the stem II nor on the 5' stem-loop region of U4 RNA. Our data provide strong evidence that, following the cytoplasmic assembly of the U4 snRNP, the interaction of the U4 snRNP with U6 RNA/RNP occurs in the nucleus; furthermore, cytoplasmic-nuclear transport of the U4 snRNP is independent of U4/U6 snRNP assembly.  相似文献   

3.
4.
5.
U3 small nuclear ribonucleic acids (snRNA) and U3 small nuclear ribonucleoprotein (snRNP), which are thought to be responsible for ribosomal RNA processing, are quantitated and localized during oocyte maturation, fertilization, and early embryogenesis in the mouse. On the basis of Northern blot and nuclease protection experiments, it is estimated that there are about 5 x 10(4) U3 snRNA molecules in an ovulated oocyte and in a two-cell embryo. This number then increases roughly 50-fold to 2.7 x 10(6) molecules per embryo by the blastocyst stage. At all stages of development U3 snRNP antigens colocalize with nucleoli, as defined by differential interference contrast microscopy and an antibody to a nucleolar epitope. The synthesis and distribution of U3 snRNA and U3 snRNP follow a pattern independent from other major U snRNPs and snRNAs.  相似文献   

6.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

7.
Egg animal-vegetal polarity in cnidarians is less pronounced than in most bilaterian species, and its normal alignment with the future embryonic axis can be disturbed by low-speed centrifugation. We have analyzed the development of oocyte polarity within the transparent and autonomously functioning gonads of Clytia medusae, focusing on the localization of three recently identified maternal mRNAs coding for axis-directing Wnt pathway regulators. Animal-vegetal polarity was first detectable in oocytes committed to their final growth phase, as the oocyte nucleus (GV) became positioned at the future animal pole. In situ hybridization analyses showed that during this first, microtubule-dependent polarization event, CheFz1 RNA adopts a graded cytoplasmic distribution, most concentrated around the GV. CheFz3 and CheWnt3 RNAs adopt their polarized cortical localizations later, during meiotic maturation. Vegetal localization of CheFz3 RNA was found to require both microtubules and an intact gonad structure, while animal localization of CheWnt3 RNA was microtubule independent and oocyte autonomous. The cortical distribution of both these RNAs was sensitive to microfilament-disrupting drugs. Thus, three temporally and mechanistically distinct RNA localization pathways contribute to oocyte polarity in Clytia. Unlike the two cortical RNAs, CheFz1 RNA was displaced in fertilized eggs upon centrifugation, potentially explaining how this treatment re-specifies the embryonic axis.  相似文献   

8.
Psoralen crosslinking of RNA-RNA intermolecular duplexes in sea urchin egg extracts reveals that some maternal poly(A)+ RNA molecules are complexed with U1 RNA, a cofactor in somatic nuclear pre-mRNA splicing. Reaction of egg extracts with a monoclonal antibody specific for U1 snRNP selects, in addition to U1, RNAs that contain repeated sequences interspersed with single-copy elements. Antibody-selection experiments with nucleate and anucleate egg halves demonstrate that most of the U1 RNA-interspersed RNA complexes are cytoplasmic, as is the egg's store of total U1 snRNP. These results raise the possibility that maternal interspersed RNAs include unprocessed pre-messenger RNA molecules in arrested complexes with splicing cofactors.  相似文献   

9.
Early development in Xenopus laevis is programmed in part by maternally inherited mRNAs that are synthesized and stored in the growing oocyte. During oocyte maturation, several of these messages are translationally activated by poly(A) elongation, which in turn is regulated by two cis elements in the 3' untranslated region, the hexanucleotide AAUAAA and a cytoplasmic polyadenylation element (CPE) consisting of UUUUUAU or similar sequence. In the early embryo, a different set of maternal mRNAs is translationally activated. We have shown previously that one of these, C12, requires a CPE consisting of at least 12 uridine residues, in addition to the hexanucleotide, for its cytoplasmic polyadenylation and subsequent translation (R. Simon, J.-P. Tassan, and J.D. Richter, Genes Dev. 6:2580-2591, 1992). To assess whether this embryonic CPE functions in other maternal mRNAs, we have chosen Cl1 RNA, which is known to be polyadenylated during early embryogenesis (J. Paris, B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe, Gene 72:169-176, 1988). Wild-type as well as mutated versions of Cl1 RNA were injected into fertilized eggs and were analyzed for cytoplasmic polyadenylation at times up to the gastrula stage. This RNA also required a poly(U) CPE for cytoplasmic polyadenylation in embryos, but in this case the CPE consisted of 18 uridine residues. In addition, the timing and extent of cytoplasmic poly(A) elongation during early embryogenesis were dependent upon the distance between the CPE and the hexanucleotide. Further, as was the case with Cl2 RNA, Cl1 RNA contains a large masking element that prevents premature cytoplasmic polyadenylation during oocyte maturation. To examine the factors that may be involved in the cytoplasmic polyadenylation of both C12 and C11 RNAs, we performed UV cross-linking experiments in egg extracts. Two proteins with sizes of ~36 and ~45 kDa interacted specifically with the CPEs of both RNAs, although they bound preferentially to the C12 CPE. The role that these proteins might play in cytoplasmic polyadenylation is discussed.  相似文献   

10.
11.
12.
Poly(A) can be added to mRNAs both in the nucleus and in the cytoplasm. During oocyte maturation and early embryonic development, cytoplasmic polyadenylation of preexisting mRNAs provides a common mechanism of translational control. In this report, to begin to understand the regulation of polyadenylation activities during early development, we analyze poly (A) polymerases (PAPs) in oocytes and early embryos of the frog, Xenopus laevis. We have cloned and sequenced a PAP cDNA that corresponds to a maternal mRNA present in frog oocytes. This PAP is similar in size and sequence to mammalian nuclear PAPs. By immunoblotting using monoclonal antibodies raised against human PAP, we demonstrate that oocytes contain multiple forms of PAP that display different electrophoretic mobilities. The oocyte nucleus contains primarily the slower migrating forms of PAP, whereas the cytoplasm contains primarily the faster migrating species. The nuclear forms of PAP are phosphorylated, accounting for their retarded mobility. During oocyte maturation and early postfertilization development, preexisting PAPs undergo regulated phosphorylation and dephosphorylation events. Using the cloned PAP cDNA, we demonstrate that the complex changes in PAP forms seen during oocyte maturation may be due to modifications of a single polypeptide. These results demonstrate that the oocyte contains a cytoplasmic polymerase closely related to the nuclear enzyme and suggest models for how its activity may be regulated during early development.  相似文献   

13.
The progression of oocyte meiosis is accompanied by major changes in the ooplasm that play a key role in the completion of a coordinate nuclear and cytoplasmic maturation. We review evidence from the literature and present data obtained in our laboratory on different aspects of pig oocyte cytoplasm compartmentalization during maturation and early embryo development. In particular, we will discuss the changes in adenosine triphosphate (ATP) concentration and distribution taking place during the maturation process and their possible significance for oocyte developmental competence. We describe two important aspects of cytoplasmic streaming: mitochondrial distribution patterns in oocytes and early embryos and the complex rearrangements of cytoplasmic microtubule networks, while discussing their possible correlations with ooplasm compartmentalization. Recent evidence indicates that the cytoskeleton is used to shuttle not only organelles but also mRNAs to specific sites within the oocyte cytoplasm. Localization is driven by specific molecular motors belonging to the kinesin superfamily and requires the involvement of the RNA targeting molecule Staufen. We present recent experimental evidence, obtained in our laboratory, on the pig orthologues for kinesin KIF5B and Staufen, describe their expression patterns and discuss their possible role in oocyte maturation.  相似文献   

14.
Mouse preovulatory oocytes, zygotes, parthenogenetically activated pronuclear oocytes, and early embryos, as well as hamster zygotes, were analyzed, by autoradiography, for the distribution of either “maternal” or newly synthesized RNAs. Early mouse embryos were also examined for the distribution of newly replicated DNA. Special attention was attributed to NLBs in oocytes or to NPBs in early embryos. In mouse oocytes, [5-3H]uridine radioactivity accumulated (after a 2-hr pulse) in vitro, in addition to other nuclear compartments, in the central compact material of the NLBs. There was no cytoplasmic labeling. In all parthenogenetic pronuclear embryos developed from similarly labeled oocytes, this label was distinctly detectable in the central compact material of the NPBs; less intensive labeling was seen in the nucleoplasm and cytoplasm. On the contrary, the central compact part of the mouse NPB did not show labeling in DNA after a continuous culture with [6-3H]thymidine. In mouse and hamster pronuclear zygotes, convincing evidence was obtained for a lack of any newly synthesized nucleic acids in the compact material of NPBs using 4- to 10-hr culture with [8-3H]adenosine. Based on these data, it was shown that the NLBs of oocytes or NPBs of early embryos probably contain RNAs synthesized during the last stages of antral follicle oocyte differentiation. This unique pathway of RNAs in the oocyte—embryo system may explain the specific morphology of both oocyte and early embryo “nucleoli.” © 1995 Wiley-Liss, Inc.  相似文献   

15.
We studied the effects of actinomycin D, alpha-amanitin, puromycin, and cycloheximide on the cytoplasmic activity of maturing Rana pipiens oocytes that induces chromosome condensation in transplanted brain nuclei. Treatment of oocytes with each inhibitor suppressed the chromosome condensation induced by metaphase oocytes to varying degrees depending upon the dose of inhibitor, despite the fact that untreated metaphase I oocytes already possessed chromosome condensation activity (CCA). Treatment of brain nuclei before injection completely suppressed condensation at all doses used. Chromosome condensation induced by metaphase II oocyte cytoplasm, however, was insensitive to all the inhibitors, even when the brain nuclei were pretreated. Oocytes treated with alpha-amanitin throughout maturation induced chromosome condensation when tested at metaphase II. Removal of the oocyte chromosomes after the germinal vesicle (GV) broke down did not prevent the development of CCA, whereas removal of the entire GV before initiation of maturation deprived oocytes of CCA. The results suggest that metaphase I oocyte cytoplasm stimulates synthesis of brain nuclear RNAs that are translated into proteins necessary for chromosome condensation, whereas metaphase II oocytes possess all the factors for chromosome condensation. In both cases, GV nucleoplasm appears indispensable for the development of CCA, whereas immediate activity of the oocyte genome is not required.  相似文献   

16.
17.
We describe the accumulation and distribution of poly (A)+RNA during oogenesis and early embryogenesis as revealed by in situ hybridization with a radio-labeled poly (U) probe. The amount of poly (A)+RNA in nurse cell cytoplasm continuously increased untill mid-vitellogenic stage (st. 10), then decreased with the rapid increase of poly (A)+RNA in the oocyte (st. 11). The localization of poly (A)+RNA at stage 10 was in the anterior region of the oocyte, where it is connected by cytoplasmic bridge to the nurse cells. These observations indicate that most of the poly (A)+RNA synthesized in the nurse cells is transferred to the oocyte through the cytoplasmic bridges at stage 10–11. During the remainder of oogenesis (st. 11–14) and during preblastodermal embryogenesis, poly (A)+RNA was evenly distributed over the cytoplasm of oocytes and embryos. At blastoderm stage, poly(A)+RNA became concentrated in the peripheral region of embryos. Though the somatic nuclei of the blastoderm contained a detectable amount of poly (A)+ RNA, the pole cell nuclei did not. The cytoplasmic RNA visualised by acridine orange staining and the poly (A)+RNA detected by hybridization with [3H]poly (U) exhibited identical distributions during oogenesis and early embryogenesis. These observations provide a basis to assess the unique distributions of specific RNA sequences involved in early development.  相似文献   

18.
The expression of certain maternal mRNAs during oocyte maturation is regulated by cytoplasmic polyadenylation. To understand this process, we have focused on a maternal mRNA from Xenopus termed G10. This mRNA is stored in the cytoplasm of stage 6 oocytes until maturation when the process of poly(A) elongation stimulates its translation. Deletion analysis of the 3' untranslated region of G10 RNA has revealed that two sequence elements, UUUUUUAU and AAUAAA were both necessary and sufficient for polyadenylation and polysomal recruitment. In this communication, we have defined the U-rich region that is optimal for polyadenylation as UUUUUUAUAAAG, henceforth referred to as the cytoplasmic polyadenylation element (CPE). We have also identified unique sequence requirements in the 3' terminus of the RNA that can modulate polyadenylation even in the presence of wild-type cis elements. A time course of cytoplasmic polyadenylation in vivo shows that it is an early event of maturation and that it requires protein synthesis within the first 15 min of exposure to progesterone. MPF and cyclin can both induce polyadenylation but, at least with respect to MPF, cannot obviate the requirement for protein synthesis. To identify factors that may be responsible for maturation-specific polyadenylation, we employed extracts from oocytes and unfertilized eggs, the latter of which correctly polyadenylates exogenously added RNA. UV crosslinking demonstrated that an 82 kd protein binds to the U-rich CPE in egg, but not oocyte, extracts. The data suggest that progesterone, either in addition to or through MPF/cyclin, induces the synthesis of a factor during very early maturation that stimulates polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Of the 10 Xenopus oocyte cDNA clones previously examined in this laboratory (L. Golden, U. Schafer, and M. Rosbash, 1980, Cell22, 835–844), 5 are complementary to RNAs which which decrease in abundance during early development. We have further examined the behavior during embryogenesis of these 5 sets of clone-complementary RNAs. The results indicate that for 3 of these 5 sets of RNAs there is an increase in the per embryo levels of RNA. Thus, 8 of the 10 clones originally examined are complementary to RNAs which increase in amount during early embryogenesis. One of the remaining two clones is complementary to (at least) 4 RNAs which vary somewhat in their levels during embryogenesis. The last clone (XOC 2–7) is complementary to an RNA species which is largely destroyed at late blastula or early gastrula. This RNA is therefore the only maternal sequence, of the ten clones examined, which unambiguously decreases in amount during embryogenesis. The data also show that XOC 2–7 RNA is largely adenylated at oocyte maturation and then deadenylated during subsequent embryogenesis while another clone, XOC 1–2, is largely dead-enylated at oocyte maturation. The results also suggest that a large fraction of oocyte RNAs are present in early embryos (and in liver) and are largely the same size as in oocytes.  相似文献   

20.
We have investigated the possibility that mitotic nuclei originating from preimplantation stage embryos and placed in the oocyte cytoplasm can undergo remodelling that allows them to undergo meiosis in the mouse. To address this question, we have used enucleated germinal vesicle (GV) ooplasts as recipients and blastomeres from the 2-, 4- or 8-cell stage as nuclear donors. We employed two methods to obtain ooplasts from GV oocytes: cutting and enucleation. Although efficiency of the reconstruction process was higher after enucleation than after cutting (90% and 70% respectively), the developmental potential of the oocytes was independent of how they had been produced. Nuclei from the 2-, 4-, or 8-cell stage embryos supported maturation in about 35%, 55% and 60% of cases, respectively. The time between nuclear envelope breakdown and the first meiotic division was shortened by up to 5 h in reconstructed oocytes, a period equivalent to the mitotic division of control blastomeres. About one-third of oocytes reconstituted with blastomere nuclei divided symmetrically instead of extruding a polar body; however, in the majority of them metaphase plates were found, suggesting that reconstructed oocytes (cybrids) underwent a meiotic rather than mitotic division. The highest percentage of asymmetric divisions accompanied by metaphase plates was found in cybrids with 8-cell-stage blastomere nuclei, suggesting that the nuclei from this stage appear to conform best to the cytoplasmic environment of GV ooplasts. Our results indicate that the oocyte cytoplasm is capable of remodelling blastomere nuclei, allowing them to follow the path of the meiotic cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号