首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coagulansin-A (withanolide) is the steroidal lactone obtained from Withania coagulans which belong to Solanaceae family. The present study investigated the effects of coagulansin-A on bovine oocyte maturation and embryo development in vitro. All these oocytes were aspirated from the ovaries obtained from Korean Hanwoo cows at a local abattoir. To determine whether coagulansin-A has beneficial effects on bovine oocyte maturation in vitro, 355 oocytes per group (control and treated) in seven replicates were subjected with different concentrations (1, 2.5, 5, 7.5 and 10 μM) of coagulansin-A. The coagulansin-A was added in the in vitro maturation (IVM) media followed by in vitro fertilization (IVF) and then in vitro culture (IVC). Only treatment with 5 μM coagulansin-A remarkably (P<0.05) improved embryos development (Day 8 blastocyst) having 27.30 and 40.01% for control and coagulansin-A treated groups respectively. Treatment with 5 μM coagulansin-A significantly induced activation of heat shock protein 70 (HSP70) (P<0.05). Immunofluorescence analysis revealed that 5 μM coagulansin-A treatment also significantly inhibited oxidative stress and inflammation during bovine embryo development in vitro by decreasing 8-oxoguanosine (8-OxoG) (P<0.05) and nuclear factor-κB (NF-κB) (P<0.05). The expressions of HSP70 and NF-κB were also conformed through real-time PCR (RT-PCR). Additionally, the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay confirmed that coagulansin-A treatment significantly improved the embryo quality and reduced bovine embryo DNA damage (P<0.05). The present study provides new information regarding the mechanisms by which coagulansin-A promotes bovine embryo development in vitro.  相似文献   

2.
To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits in vitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications.  相似文献   

3.
Worldwide, 48% of adult males are overweight or obese. An association between infertility and excessive body weight is now accepted, although focus remains primarily on females. It has been shown that parental obesity results in compromised embryo development, disproportionate changes in embryo metabolism and reduced blastocyst cell number. The aim of this study was to determine whether paternal obesity has negative effects on the resultant embryo. Specifically, using in vitro fertilisation (IVF), we wanted to isolate the functional effects of obesity on sperm by examining the subsequent embryo both pre- and post-implantation. Epididymal sperm was collected from age matched normal and obese C57BL/6 mice and cryopreserved for subsequent IVF with oocytes collected from Swiss females (normal diet/weight). Obesity was induced in male mice by feeding a high fat diet of 22% fat for 10 weeks. Resultant embryos were cultured individually and development monitored using time-lapse microscopy. Paternal obesity resulted in a significant delay in preimplantation embryo development as early as syngamy (P<0.05). Metabolic parameters were measured across key developmental stages, demonstrating significant reduction in mitochondrial membrane potential (P<0.01). Blastocysts were stained to determine trophectoderm (TE) and inner cell mass (ICM) cell numbers, revealing significant differences in the ratio of cell allocation to TE and ICM lineages (P<0.01). Functional studies examining blastocyst attachment, growth and implantation demonstrated that blastocysts derived from sperm of obese males displayed significantly reduced outgrowth on fibronectin in vitro (P<0.05) and retarded fetal development in vivo following embryo transfer (P<0.05). Taken together, these data clearly demonstrate that paternal obesity has significant negative effects on the embryo at a variety of key early developmental stages, resulting in delayed development, reduced placental size and smaller offspring.  相似文献   

4.
The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P<0.05) at D7 (MII = 62.4±17.5% and FSH = 58.8±16.1%) compared to those obtained from unstimulated animals (CONT = 37.9±8.5% and IMA = 50.6±14.4%). However, the maturation system did not affect the resistance of oocytes to vitrification because the blastocyst rate at D7 was similar (P>0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was more highly expressed in MII compared to FSH (P<0.05). The results suggest that although maturation systems improve embryonic development, they do not change the PM composition nor the resistance of bovine oocytes to vitrification.  相似文献   

5.
Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced.Abbreviations: ART, assisted reproductive technologies; BO, Brackett and Oliphant; BSA, bovine serum albumin; CaI, calcium ionophore; CC, cumulus cells; COC, cumulus–oocyte complex; CO2, carbon dioxide; CR1aa, Charles Rosenkran’s 1 amino acid; DNA, deoxyribonucleic acid; DO, denuded oocyte; EA, early apoptosis; FBS, fetal bovine serum; FITC, fluorescein isothiocyanate; FSH, follicle stimulating hormone; GSH, glutathione; hpi, hours post insemination; IVC, in vitro culture; IVF, in vitro fertilization; IVM, in vitro maturation; IVP, in vitro produced; LA, late apoptosis; LH, luteinizing hormone; PBS, phosphate buffered saline; PI, propidium iodide; PS, phosphatidylserine; TUNEL, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling.  相似文献   

6.
Our aim is to verify if oocyte developmental potential is related to the timing of meiotic progression and to mitochondrial distribution and activity using prepubertal and adult oocytes as models of low and high developmental capacity respectively. Prepubertal and adult oocytes were incorporated in an in vitro maturation system to determine meiotic and developmental competence and to assess at different time points kinetic of meiotic maturation, 2D protein electrophoresis patterns, ATP content and mitochondria distribution. Maturation and fertilization rates did not differ between prepubertal and adult oocytes (95.1% vs 96.7% and 66.73% vs 70.62% respectively for prepubertal and adult oocytes). Compared to adults, prepubertal oocytes showed higher parthenogenesis (17.38% vs 2.08% respectively in prepubertals and adults; P<0.01) and polispermy (14.30% vs 2.21% respectively in prepubertals and adults; P<0.01), lower cleavage rates (60.00% vs 67.08% respectively in prepubertals and adults; P<0.05) and blastocyst output (11.94% vs 34.% respectively in prepubertals and adults; P<0.01). Prepubertal oocytes reached MI stage 1 hr later than adults and this delay grows as the first meiotic division proceeds. Simultaneously, the protein pattern was altered since in prepubertal oocytes it fluctuates, dropping and rising to levels similar to adults only at 24 hrs. In prepubertal oocytes ATP rise is delayed and did not reach levels comparable to adult ones. CLSM observations revealed that at MII, in the majority of prepubertal oocytes, the active mitochondria are homogenously distributed, while in adults they are aggregated in big clusters. Our work demonstrates that mitochondria and their functional aggregation during maturation play an active role to provide energy in terms of ATP. The oocyte ATP content determines the timing of the meiotic cycle and the acquisition of developmental competence. Taken together our data suggest that oocytes with low developmental competence have a slowed down energetic metabolism which delays later development.  相似文献   

7.
Hydroxyurea (HU) is an FDA-approved drug used to treat a variety of diseases, especially malignancies, but is harmful to fertility. We used porcine oocytes as an experimental model to study the effect of HU during oocyte maturation. Exposure of cumulus–oocyte complexes (COCs) to 20 µM (P<0.01) and 50 µM (P<0.001) HU reduced oocyte maturation. Exposure to 20 µM HU induced approximately 1.5- and 2-fold increases in Caspase-3 (P<0.001) and P53 (P<0.01) gene expression levels in cumulus cells, respectively, increased Caspase-3 (P<0.01) and P53 (P<0.001) protein expression levels in metaphase II (MII) oocytes and increased the percentage of apoptotic cumulus cells (P<0.001). In addition, HU decreased the mitochondrial membrane potential (Δφm) (P<0.01 and P<0.001) and glutathione (GSH) levels (P<0.01 and P<0.001) of both cumulus cells and MII oocytes, while increasing their reactive oxygen species (ROS) levels (P<0.001). Following parthenogenetic activation of embryos derived from MII oocytes, exposure to 20 µM HU significantly reduced total blastocyst cell numbers (P<0.001) and increased apoptosis of blastocyst cells (P<0.001). Moreover, HU exposure reduced the rate of development of two-celled, four- to eight-celled, blastocyst, and hatching stages after parthenogenetic activation (P<0.05). Our findings indicate that exposure to 20 µM HU caused significant oxidative stress and apoptosis of MII oocytes during maturation, which affected their developmental ability. These results provide valuable information for safety assessments of HU.  相似文献   

8.
As a tumor suppressor homologue during mitosis, Chk2 is involved in replication checkpoints, DNA repair, and cell cycle arrest, although its functions during mouse oocyte meiosis and early embryo development remain uncertain. We investigated the functions of Chk2 during mouse oocyte maturation and early embryo development. Chk2 exhibited a dynamic localization pattern; Chk2 expression was restricted to germinal vesicles at the germinal vesicle (GV) stage, was associated with centromeres at pro-metaphase I (Pro-MI), and localized to spindle poles at metaphase I (MI). Disrupting Chk2 activity resulted in cell cycle progression defects. First, inhibitor-treated oocytes were arrested at the GV stage and failed to undergo germinal vesicle breakdown (GVBD); this could be rescued after Chk2 inhibition release. Second, Chk2 inhibition after oocyte GVBD caused MI arrest. Third, the first cleavage of early embryo development was disrupted by Chk2 inhibition. Additionally, in inhibitor-treated oocytes, checkpoint protein Bub3 expression was consistently localized at centromeres at the MI stage, which indicated that the spindle assembly checkpoint (SAC) was activated. Moreover, disrupting Chk2 activity in oocytes caused severe chromosome misalignments and spindle disruption. In inhibitor-treated oocytes, centrosome protein γ-tubulin and Polo-like kinase 1 (Plk1) were dissociated from spindle poles. These results indicated that Chk2 regulated cell cycle progression and spindle assembly during mouse oocyte maturation and early embryo development.  相似文献   

9.
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that regulate multiple stages of mitosis. Expression and distribution of polo-like kinase 1 (Plk1) were characterized during porcine oocyte maturation, fertilization and early embryo development in vitro, as well as after microtubule polymerization modulation. The quantity of Plk1 protein remained stable during meiotic maturation. Plk1 accumulated in the germinal vesicles (GV) in GV stage oocytes. After germinal vesicle breakdown (GVBD), Plk1 was localized to the spindle poles at metaphase I (MI) stage, and then translocated to the middle region of the spindle at anaphase-telophase I. Plk1 was also localized in MII spindle poles and on the spindle fibers and on the middle region of anaphase-telophase II spindles. Plk1 was not found in the spindle region when colchicine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. After fertilization, Plk1 concentrated around the female and male pronuclei. During early embryo development, Plk1 was found to be in association with the mitotic spindle at metaphase, but distributed diffusely in the cytoplasm at interphase. Our results suggest that Plk1 is a pivotal regulator of microtubule organization and cytokinesis during porcine oocyte meiotic maturation, fertilization, and early embryo cleavage in pig oocytes.  相似文献   

10.
11.
Little is known about mitochondrial DNA (mtDNA) replication during oocyte maturation and its regulation by extracellular factors. The present study determined the effects of supplementation of maturation medium with porcine follicular fluid (pFF; 0, 10%, 20%, and 30%) on mtDNA copy number and oocyte maturation in experiment 1; the effects on epidermal growth factor (EGF; 10 ng/mL), neuregulin 1 (NRG1; 20 ng/mL), and NRG1 + insulin-like growth factor 1 (IGF1; 100 ng/mL + NRG1 20 ng/mL), on mtDNA copy number, oocyte maturation, and embryo development after parthenogenic activation in experiment 2; and effects on embryo development after in vitro fertilization in experiment 3. Overall, mtDNA copy number increased from germinal vesicle (GV) to metaphase II (MII) stage oocytes after in vitro maturation (GV: 167 634.6 ± 20 740.4 vs. MII: 275 131.9 ± 9 758.4 in experiment 1; P < 0.05; GV: 185 004.7 ± 20 089.3 vs. MII: 239 392.8 ± 10 345.3 in experiment 2; P < 0.05; Least Squares Means ± SEM). Supplementation of IVM medium with pFF inhibited mtDNA replication (266 789.9 ± 11 790.4 vs. 318 510.1 ± 20 377.4; P < 0.05) and oocyte meiotic maturation (67.3 ± 0.7% vs. 73.2 ± 1.2%, for the pFF supplemented and zero pFF control, respectively; P < 0.01). Compared with the control, addition of growth factors enhanced oocyte maturation. Furthermore, supplementation of NRG1 stimulated mitochondrial replication, increased mtDNA copies in MII oocytes than in GV oocytes, and increased percentage of blastocysts in both parthenogenetic and in vitro fertilized embryos. In this study, mitochondrial biogenesis in oocytes was stimulated during in vitro maturation. Oocyte mtDNA copy number was associated with developmental competence. Supplementation of maturation medium with NRG1 increased mtDNA copy number, and thus provides a means to improve oocyte quality and developmental competence in pigs.  相似文献   

12.
Epidermal growth factor (EGF) has been shown to facilitate the in vitro maturation of sheep oocytes, and enhance embryo’s capability for further development. However, such kind of molecular mechanism has not yet been elucidated. In the present study, we investigated the effect of EGF-mediated mitogen-activated protein kinases 3 and 1 (MAPK3/1) pathway on in vitro maturation of sheep oocytes. U0126, a specific inhibitor of MEK (MAPK kinase), was added into the maturation culture medium to block the EGF-mediated MAPK3/1 pathway with different doses. Then, the nuclear maturation of sheep oocytes was examined. Additionally, the effect of EGF-mediated MAPK3/1 on cytoplasmic maturation was examined though in vitro fertilization and embryonic development. The rate of germinal vesicle breakdown (GVBD) after 6 h of culture with 10−4 mol/l of U0126 (50.4%) was significantly decreased compared with control (67.2%, p < 0.05), and the first polation body (PB1) extrusion rate after 22 h of culture in drug treatment was also significantly inhibited compared with control (28.6% vs. 48.4%, p < 0.05). However, 10−6 mol/l U0126 had slight effect on oocyte nuclear maturation. The normal distribution rate of α-tubulin in the oocytes after 22 h of in vitro maturation was significantly decreased in the 10−4 mol/l U0126 group (54%) compared with control (68%, p < 0.05). After in vitro fertilization, the cleavage rate in drug treatments (56.8% in 10−6 mol/l U0126 group and 42.6% in 10−4 mol/l U0126 group) was significantly decreased compared with control (72.3%, p < 0.01). The blastocyst rate in 10−4 mol/l U0126 group (17.6%) was also significantly decreased compared with control (29.9%, p < 0.05). Collectively, these results suggest that EGF-mediated MAPK3/1 pathway is conducive to in vitro maturation of sheep oocytes.  相似文献   

13.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   

14.
Localisation of Protein Kinase A (PKA) by A-Kinase Anchoring Proteins (AKAPs) is known to coordinate localised signalling complexes that target cAMP-mediated signalling to specific cellular sub-domains. The cAMP PKA signalling pathway is implicated in both meiotic arrest and meiotic resumption, thus spatio-temporal changes in PKA localisation during development may determine the oocytes response to changes in cAMP. In this study we aim to establish whether changes in PKA localisation occur during oocyte and early embryo development.Using fluorescently-labelled PKA constructs we show that in meiotically incompetent oocytes PKA is distributed throughout the cytoplasm and shows no punctuate localisation. As meiotic competence is acquired, PKA associates with mitochondria. Immature germinal vesicle (GV) stage oocytes show an aggregation of PKA around the GV and PKA remains co-localised with mitochondria throughout oocyte maturation. After fertilisation, the punctuate, mitochondrial distribution was lost, such that by the 2-cell stage there was no evidence of PKA localisation. RT-PCR and Western blotting revealed two candidate AKAPs that are known to be targeted to mitochondria, AKAP1 and D-AKAP2. In summary these data show a dynamic regulation of PKA localisation during oocyte and early embryo development.  相似文献   

15.
The capability of oocyte cytoplasm to induce chromosome condensation was studied by transplantation of isolated brain nuclei into Rana pipiens oocytes induced to undergo maturation in vitro by progesterone treatment. It was found that the chromosome condensation activity (CCA) first appeared in the cytoplasm of maturing oocytes shortly after germinal vesicle breakdown (GVBD), persisted in fully mature oocytes, but rapidly disappeared when the oocytes were artificially activated. A comparison of the time course of the oocyte chromosome condensation cycle and of brain chromosome condensation in maturing and activated oocytes revealed a close temporal correlation between the two, suggesting that both are under the control of the same cytoplasmic factor(s). Oocytes enucleated before GVBD always failed to develop CCA. The CCA could be restored in enucleated oocytes by injecting nucleoplasm obtained from oocytes that had not yet undergone GVBD although this same nucleoplasm was incapable of producing CCA when mixed with the cytoplasm of oocytes that had not reached the stage of GVBD. It was therefore suggested that the CCA had a dual origin involving both cytoplasmic maturation and GV materials.  相似文献   

16.

Background

Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or ‘programming’ of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication.

Methodology/Principal Findings

We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation.

Conclusions/Significance

Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.  相似文献   

17.
NEK5, a member of never in mitosis‐gene A‐related protein kinase, is involved in the regulation of centrosome integrity and centrosome cohesion at mitosis in somatic cells. In this study, we investigated the expression and function of NEK5 during mouse oocyte maturation and preimplantation embryonic development. The results showed that NEK5 was expressed from germinal vesicle (GV) to metaphase II (MII) stages during oocyte maturation with the highest level of expression at the GV stage. It was shown that NEK5 localized in the cytoplasm of oocytes at GV stage, concentrated around chromosomes at germinal vesicle breakdown (GVBD) stage, and localized to the entire spindle at prometaphase I, MI and MII stages. The small interfering RNA‐mediated depletion of Nek5 significantly increased the phosphorylation level of cyclin‐dependent kinase 1 in oocytes, resulting in a decrease of maturation‐promoting factor activity, and severely impaired GVBD. The failure of meiotic resumption caused by Nek5 depletion could be rescued by the depletion of Wee1B. We found that Nek5 depletion did not affect CDC25B translocation into the GV. We also found that NEK5 was expressed from 1‐cell to blastocyst stages with the highest expression at the blastocyst stage, and Nek5 depletion severely impaired preimplantation embryonic development. This study demonstrated for the first time that NEK5 plays important roles during meiotic G2/M transition and preimplantation embryonic development.  相似文献   

18.
The objective was to evaluate the developmental competence of immature and matured ovine oocytes after removing, maintaining or adding cumulus cells (CC) associated to vitrification by Cryotop method. Three experiments were performed involving 3,144 oocytes. In Experiment 1, CC were removed from immature, matured or fertilized oocytes subjected to in vitro embryo production. In Experiment 2, oocytes were vitrified either in MI or MII stage with or without CC, while a control group with CC remained unvitrified. In Experiment 3, oocytes partially denuded from CC were vitrified either in MI or MII stage, and a co-culture of fresh CC was added or not soon after warming to complete in vitro maturation (IVM) and in vitro fertilization (IVF), or IVF, respectively, while a control group remained unvitrified. In Experiment 1, the cleavage rate, development rate on Day 6 and blastocyst rate on Day 8 were improved when CC were maintained until the end of IVF (P < 0.05). In Experiment 2, vitrification of oocytes with enclosed CC showed a tendency to increase cleavage (P = 0.06) and improved blastocyst rate (P < 0.05). In Experiment 3, adding CC as co-culture after vitrification-warming tended to improve cleavage rate (P = 0.06) and increased hatching rate (P < 0.05). Regarding oocyte stage, vitrification of in vitro matured oocytes resulted in greater developmental competence than immature stages (P < 0.05). In conclusion, CC seems to have a relevant role for in vitro embryo development in either fresh or vitrified oocytes.  相似文献   

19.
In the present study, oocytes retrieved from cross bred Karan Fries cows by ovum pick-up technique were graded into Group 1 and Group 2, based on the morphological appearance of the individual cumulus–oocyte complexes (COCs). To analyze whether the developmental potential of the COCs bears a relation to morphological appearance, relative expression of a panel of genes associated with; (a) cumulus–oocyte interaction (Cx43, Cx37, GDF9 and BMP15), (b) fertilization (ZP2 and ZP3), (c) embryonic development (HSF1, ZAR1 and bFGF) and (d) apoptosis and survival (BAX, BID and BCL-XL, MCL-1, respectively) was studied at two stages: germinal vesicle (GV) stage and after in vitro maturation. The competence was further corroborated by evaluating the embryonic progression of the presumed zygotes obtained from fertilization of the graded COCs. The gene expression profile and development rate in pooled A and B grade (Group 1) COCs and pooled C and D grade (Group 2) COCs were determined and compared according to the original grades. The results of the study demonstrated that the morphologically characterized Group 2 COCs showed significantly (P<0.05) lower expression for most of the genes related to cumulus–oocyte interplay, fertilization and embryonic development, both at GV stage as well as after maturation. Group 1 COCs also showed greater expression of anti-apoptotic genes (BCL-XL and MCL1) both at GV stage and after maturation, while pro-apoptotic genes (BAX and BID) showed significantly (P<0.05) elevated expression in poor quality COCs at both the stages. The cleavage rate in Group 1 COCs was significantly higher than that of Group 2 (74.46±7.06 v. 31.57±5.32%). The development of the presumed zygotes in Group 2 oocytes proceeded up to 8- to 16-cell stages only, while in Group 1 it progressed up to morulae (35.38±7.11%) and blastocyst stages (9.70±3.15%), indicating their better developmental potential.  相似文献   

20.
Meiosis activating sterol, produced directly by lanosterol 14-α-demethylase (CYP51) during cholesterol biosynthesis, has been shown to promote the initiation of oocyte meiosis. However, the physiological significance of CYP51 action on oocyte meiosis in response to gonadotrophins’ induction remained to be further explored. Herein, we analyzed the role of CYP51 in gonadotrophin-induced in vitro oocyte maturation via RNA interference (RNAi). We showed that although both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) significantly induced meiotic resumption in follicle-enclosed oocytes (FEOs), the effect of LH on oocyte meiosis resumption in FEOs was weaker than FSH. Moreover, both FSH and LH were able to upregulate CYP51 expression in cultured follicular granulosa cells when examined at 8 h or 12 h posttreatments, respectively. Interestingly, whereas knockdown of CYP51 expression via small interference RNA (siRNA) moderately blocked (23% reduction at 24 h) FSH-induced oocyte maturation [43% germinal vesicle breakdown (GVBD) rate in RNAi vs. 66% in control, P < 0.05] in FEOs, similar treatments showed no apparent effects on LH-induced FEO meiotic maturation (58% GVBD rate in RNAi vs. 63% in control, P > 0.05). Moreover, the results in a cumulus-enclosed oocytes (CEOs) model showed that approximately 30% of FSH-induced CEOs’ meiotic resumption was blocked upon CYP51 knockdown by siRNAs. These findings suggest that FSH, partially at least, employs CYP51, and therefore the MAS pathway, to initiate oocyte meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号