首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
2.
Ectopic expression of defined sets of genetic factors can reprogram somatic cells to induced pluripotent stem (iPS) cells that closely resemble embryonic stem (ES) cells. The low efficiency with which iPS cells are derived hinders studies on the molecular mechanism of reprogramming, and integration of viral transgenes, in particular the oncogenes c-Myc and Klf4, may handicap this method for human therapeutic applications. Here we report that valproic acid (VPA), a histone deacetylase inhibitor, enables reprogramming of primary human fibroblasts with only two factors, Oct4 and Sox2, without the need for the oncogenes c-Myc or Klf4. The two factor-induced human iPS cells resemble human ES cells in pluripotency, global gene expression profiles and epigenetic states. These results support the possibility of reprogramming through purely chemical means, which would make therapeutic use of reprogrammed cells safer and more practical.  相似文献   

3.
4.
5.
The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells, including fibroblasts, keratinocytes and peripheral blood cells, with variable reprogramming efficiencies and kinetics. Here, we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells, with similar efficiencies to keratinocytes, which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.  相似文献   

6.
7.
8.
Introduction

(1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory.

Sources of data

We reviewed the literature related to reprogramming, pluripotency and fetal stem cells.

Areas of agreement

(1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both.

Areas of controversy

(1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined.

Growing points

Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling.  相似文献   

9.
10.
11.
How is pluripotency determined and maintained?   总被引:18,自引:0,他引:18  
  相似文献   

12.
Oct-4 expression in pluripotent cells of the rhesus monkey   总被引:2,自引:0,他引:2  
  相似文献   

13.
14.
15.
16.
胚胎干细胞的无限增殖能力和亚全能性决定了它在再生医学、新药开发及发育生物学基础研究中具有巨大的应用前景。探索维持胚胎干细胞亚全能性的因子及其网络的调控功能成为胚胎干细胞生物学研究的热点。已研究发现多个与维持胚胎干细胞亚全能性相关的基因如Oct4, Nanog, Sox2等,其中Nanog是2003年5月末发现的一个基因,它对维持胚胎干细胞亚全能性起关键性作用,能够独立于L1F/Stat3维持ICM和胚胎干细胞的亚全能性。几年来,Nanog的生物学功能及其与 Oct4, Sox2等亚全能性维持基因之间的相互作用关系已有较为深入的研究,并发现多个调控Nanog表达的转录因子,从而进一步明晰Nanog与已知调控胚胎发育的信号通路之间的关系。本文在综述Nanog基因的表达特征和功能的基础上、重点探讨Nanog基因表达调控以及Oct4, Sox2等亚全能性维持基因之间的相互作用关系,并对未来的研究趋势予以展望。  相似文献   

17.
Reprogramming of somatic cells to different extents has been reported using different methods. However, this is normally accompanied by the use of exogenous materials, and the overall reprogramming efficiency has been low. Chemicals and small molecules have been used to improve the reprogramming process during somatic cell nuclear transfer (SCNT) and induced pluripotent stem (iPS) cell generation. We report here the first application of a combined epigenetic and non-genetic approach for reprogramming somatic cells, i.e., DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and human embryonic stem cell (hESC) extracts. When somatic cells were pretreated with these inhibitors before exposure to hESC (MEL1) extracts, morphological analysis revealed a higher rate of hESC-like colony formation than without pretreatment. Quantitative PCR (qPCR) demonstrated that pluripotency genes were upregulated when compared to those of somatic cells or treated with hESC extracts alone. Overall changes in methylation and acetylation levels of pretreated somatic cells suggests that epigenetic states of the cells have an effect on reprogramming efficiency induced by hESC extracts. KnockOutserum replacement (KOSR™) medium (KO-SR) played a positive role in inducing expression of the pluripotency genes. hESC extracts could be an alternative approach to reprogram somatic cells without introducing exogenous materials. The epigenetic pre-treatment of somatic cells could be used to improve the efficiency of reprogramming process. Under differentiation conditions, the reprogrammed cells exhibited differentiation ability into neurons suggesting that, although fully reprogramming was not achieved, the cells could be transdifferentiated after reprogramming.  相似文献   

18.
19.
The stunning possibility of “reprogramming” differentiated somatic cells to express a pluripotent stem cell phenotype (iPS, induced pluripotent stem cell) and the “ground state” character of pluripotency reveal fundamental features of cell fate regulation that lie beyond existing paradigms. The rarity of reprogramming events appears to contradict the robustness with which the unfathomably complex phenotype of stem cells can reliably be generated. This apparent paradox, however, is naturally explained by the rugged “epigenetic landscape” with valleys representing “preprogrammed” attractor states that emerge from the dynamical constraints of the gene regulatory network. This article provides a pedagogical primer to the fundamental principles of gene regulatory networks as integrated dynamic systems and reviews recent insights in gene expression noise and fate determination, thereby offering a formal framework that may help us to understand why cell fate reprogramming events are inherently rare and yet so robust.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号