首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Mesenchymal stem cells (MSCs) can be differentiated into cell types derived from all three germ layers by manipulating culture conditions in vitro. A multitude of growth and differentiation factors have been employed for driving MSCs towards a neuronal phenotype. In the present study, we investigated the potential of extracellular matrix (ECM) proteins—fibronectin, collagen-1, collagen-IV, laminin-1, and laminin-10/11, to induce a neuronal phenotype in bone marrow derived human MSCs in the absence of growth factors/differentiating agents. All of the ECM proteins tested were found to support adhesion of MSCs to different extents. However, direct interaction only with laminin-1 triggered sprouting of neurite-like processes. Cells plated on laminin-1 exhibited neurite out growth as early as 3 h, and by 24 h, the cells developed elaborate neurites with contracted cell bodies and neuronal-like morphology. Function-blocking antibodies directed against α6 and β1 integrin subunits inhibited neurite formation on laminin-1 which confirmed the involvement of integrin α6β1 in neurite outgrowth. Mechanistic studies revealed that cell adhesion to laminin-1 activated focal adhesion kinase (FAK), and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways. Abrogation of FAK phosphorylation by herbimycin-A inhibited neurite formation and also decreased activities of MEK and ERK. Pharmacological inhibitors of MEK (U0126) and ERK (PD98059) also blocked neurite outgrowth in cells plated on laminin-1. Our study demonstrates the involvement of integrin α6β1 and FAK-MEK/ERK signaling pathways in laminin-1-induced neurite outgrowth in MSCs in the absence of serum and differentiation factors.  相似文献   

2.
Hashimoto K  Ishima T 《PloS one》2011,6(3):e17431
Cilostazol, a type-3 phosphodiesterase (PDE3) inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3)) receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), and the Ras/Raf/ERK/MAPK) significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.  相似文献   

3.
4.
5.
6.
The study of the signaling pathways regulating neurite outgrowth in culture is important because of their potential role in neuronal differentiation in vivo. We have previously shown that the G alpha(o/i)-coupled CB1 cannabinoid receptor (CB1R) activates Rap1 to induce neurite outgrowth. G alpha(o/i) also activates the Src-Stat3 pathway. Here, we studied the relationship between the G alpha(o/i)-Rap1 and Src-Stat3 pathways and the role of these signaling pathways in CB1R-mediated neurite outgrowth in Neuro-2A cells. The CB1 agonist HU-210 induced pertussis toxin-sensitive Src and Stat3 phosphorylation. Dominant negative (DN) mutants of Src and Stat3 blocked CB1R-induced neurite outgrowth. Constitutively active Rap 1B and Ral-activated Src and CB1R-induced Src phosphorylation was inhibited by Rap1-DN and Ral-DN, indicating that both Rap1 and Ral mediate downstream signaling from G alpha(o/i) for Src activation. Rap1-activated Ral and Ral-DN blocked Rap-induced Src phosphorylation. G alpha(o)-induced Stat3 activation was blocked by Ral-DN, whereas v-Src-induced Stat3 activation was not inhibited by Ral-DN, indicating that the CB1R, through G alpha(o), mediates the sequential activation of Rap1 to Ral to Src to Stat3 in Neuro-2A cells. Downstream of Src, the CB1R also activated Rac1 and JNK, which enhanced CBR1-mediated Stat3 activation. Rac-DN blocked CB1R-induced activation of JNK. Pharmacological inhibition of JNK blocked Src and CB1R activation of Stat3, indicating that Rac and JNK are also involved in CB1R-mediated neurite outgrowth. Overall, this study demonstrated that G alpha(o/i)-coupled CB1R triggers neurite outgrowth in Neuro-2A through the activation of a signaling network containing two pathways that bifurcate at Src and converge at Stat3.  相似文献   

7.
Valproic acid (VPA), a mood stabilizer and anticonvulsant, has a variety of neurotrophic functions; however, less is known about how VPA regulates neurite outgrowth. Here, using N1E-115 neuroblastoma cells as the model, we show that VPA upregulates Gadd45a to trigger activation of the downstream JNK cascade controlling neurite outgrowth. VPA induces the phosphorylation of c-Jun N-terminal kinase (JNK) and the substrate paxillin, while VPA induction of neurite outgrowth is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) or a paxillin construct harboring a Ser 178-to-Ala mutation at the JNK phosphorylation. Transfection of Gadd45a, acting through the effector MEKK4, leads to the phosphorylation of the JNK cascade. Conversely, knockdown of Gadd45a with siRNA reduces the effect of VPA. Taken together, these results suggest that upregulation of Gadd45a explains one of the mechanisms whereby VPA induces the neurotrophic effect, providing a new role of Gadd45a in neurite outgrowth.  相似文献   

8.
The purpose of this study was to examine the role of phospholipase D1 (PLD1) in basic fibroblast growth factor (bFGF)-induced neurotrophin-3 (NT-3) expression and neurite outgrowth in H19-7 rat hippocampal neuronal progenitor cells. Overexpression of PLD1 increased bFGF-induced NT-3 expression, and dominant-negative-PLD1 or PLD1 siRNA abolished bFGF-induced NT-3 expression and neurite outgrowth. Treatment with bFGF activated the RhoA/Rho-associated kinase (ROCK)/c-jun N-terminal kinase (JNK) pathway, and bFGF-induced NT-3 expression was blocked by a dominant-negative RhoA as well as by a specific Rho-kinase inhibitor (Y27632) and a SAPK/JNK inhibitor (SP600125). Furthermore, bFGF-induced JNK activation was also blocked by Y27632. These results indicate that the RhoA/ROCK/JNK pathway acts as an upstream signaling pathway in bFGF-induced NT-3 expression. Also, phosphatidic acid, the product of PLD, increased NT-3 expression. We found that PLD regulated the RhoA/ROCK/JNK pathway, which then led to Elk-1 transactivation. When Elk-1 activity was blocked by Elk-1 siRNA, bFGF-induced NT-3 expression and neurite outgrowth decreased. NT-3 overexpression increased neurite outgrowth, indicating that NT-3 is important for neurite outgrowth. Taken together, these results suggest that PLD1 is an important regulator of bFGF-induced NT-3 expression and neurite outgrowth, which are mediated by the RhoA/ROCK/JNK pathway via Elk-1 in H19-7 cells.  相似文献   

9.
10.
Neurons extend neurites from the cell body before formation of the polarized processes of an axon and dendrites. Neurite outgrowth involves remodeling of the cytoskeletal components, which are initially regulated by small GTPases of the Rho family. Here we show that c-Jun N-terminal kinase (JNK), which is controlled by Rho GTPases Rac1 and Cdc42, is activated following neurite extension in mouse N1E-115 neuroblastoma cells as a model. The extension is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) and Clostridium difficile Toxin B, the inhibitor for Rho GTPases. Additionally, paxillin, the multifunctional focal adhesion protein, is phosphorylated at Ser 178 by upregulation of the Rac1/Cdc42/JNK cascade. Conversely, transfection of the paxillin construct harboring the Ser 178-to-Ala mutation into cells inhibits neurite extension. Taken together, these results suggest the novel role of the Rac1/Cdc42/JNK signaling cascade in neurite extension and indicate that the downstream target paxillin may be one of the convergent points of various signaling pathways underlying neurite extension.  相似文献   

11.
The collecting system of the kidney develops from the ureteric bud (UB), which undergoes branching morphogenesis, a process regulated by multiple factors, including integrin–extracellular matrix interactions. The laminin (LM)-binding integrin α3β1 is crucial for this developmental program; however, the LM types and LM/integrin α3β1–dependent signaling pathways are poorly defined. We show that α3 chain–containing LMs promote normal UB branching morphogenesis and that LM-332 is a better substrate than LM-511 for stimulating integrin α3β1–dependent collecting duct cell functions. We demonstrate that integrin α3β1–mediated cell adhesion to LM-332 modulates Akt activation in the developing collecting system and that Akt activation is PI3K independent but requires decreased PTEN activity and K63-linked polyubiquitination. We identified the ubiquitin-modifying enzyme TRAF6 as an interactor with the integrin β1 subunit and regulator of integrin α3β1–dependent Akt activation. Finally, we established that the developmental defects of TRAF6- and integrin α3–null mouse kidneys are similar. Thus K63-linked polyubiquitination plays a previously unrecognized role in integrin α3β1–dependent cell signaling required for UB development and may represent a novel mechanism whereby integrins regulate signaling pathways.  相似文献   

12.
13.
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.  相似文献   

14.
15.
16.
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling cascades. We report here that expression of constitutively active ASK1 (ASK1DeltaN) induces neurite outgrowth in the rat pheochromocytoma cell line PC12. We found that p38 and to a lesser extent JNK, but not ERK, were activated by the expression of ASK1DeltaN in PC12 cells. ASK1DeltaN-induced neurite outgrowth was strongly inhibited by treatment with the p38 inhibitor SB203580 but not with the MEK inhibitors, suggesting that activation of p38, rather than of ERK, is required for the neurite-inducing activity of ASK1 in PC12 cells. We also observed that ASK1DeltaN induced expression of several neuron-specific proteins and phosphorylation of neurofilament proteins, confirming that PC12 cells differentiated into mature neuronal cells by ASK1. Moreover, ASK1DeltaN-expressing PC12 cells survived in serum-starved condition. ASK1 thus appears to mediate signals leading to both differentiation and survival of PC12 cells. Together with previous reports indicating that ASK1 functions as a pro-apoptotic signaling intermediate, these results suggest that ASK1 has a broad range of biological activities depending on cell types and/or cellular context.  相似文献   

17.
Mouse N1E-115 cells grown on a laminin matrix exhibit neurite outgrowth in response to serum deprivation. Treatment of cells with an antibody against beta(1) integrin inhibits neurite outgrowth. Thus, beta(1) integrin is involved in the neuritogenesis of N1E-115 cells on a laminin matrix. Integrin-linked kinase (ILK), a recently identified cytoplasmic serine/threonine protein kinase that binds to the cytoplasmic domain of beta(1) integrin, has an important role in transmembrane signal transduction via integrins. We report that ILK is expressed in N1E-115 cells, the expression levels of which are constant under both normal and differentiating conditions. A stable transfection of a kinase-deficient mutant of ILK (DN-ILK) results in inhibition of neurite outgrowth in serum-starved N1E-115 cells grown on laminin. On the other hand, a transient expression of wild type ILK stimulated neurite outgrowth. The ILK activity in the parental cells was transiently activated after seeding on the laminin matrix, whereas that in the DN-ILK-transfected cells was not. These results suggest that transient activation of ILK is required for neurite outgrowth in serum-starved N1E-115 cells on laminin. Under the same conditions, p38 mitogen-activated protein (MAP) kinase, but neither MAP kinase/extracellular signal-regulated kinase kinase (MEK) nor extracellular signal-regulated kinases (ERK), was transiently activated after N1E-115 cell attachment to laminin, but not in the DN-ILK-expressed cells. The time course of p38 MAP kinase activation was very similar to that of ILK activation. Furthermore, a p38 MAP kinase inhibitor, SB203580, significantly blocked neurite outgrowth. Thus, activation of p38 MAP kinase is involved in ILK-mediated signal transduction leading to integrin-dependent neurite outgrowth in N1E-115 cells.  相似文献   

18.
Characteristics of hVSMC apoptosis and its inhibition by insulin-like growth factor-1 (IGF-1) remain unclear. Also unclear is whether a balance in hVSMCs exists whereby c-Jun N-terminal stress kinases (JNK) promote apoptosis while extracellular signal-regulated (ERK1/2) MAP kinases inhibit cell death. In this study, we examined the involvement of Akt/PKB and its upstream kinase, PDK1 and whether JNK activation correlated with human and rat VSMC apoptosis induced by staurosporine and by c-myc, respectively. We observed a strong, sustained JNK activation (and c-Jun phosphorylation), which correlated with VSMC apoptosis. IGF-1 (13.3 nM), during apoptosis inhibition, transiently inhibited JNK activity at 1 h in a phosphatidylinositol 3-kinase (PI3-K)- and MEK-ERK-dependent manner, as wortmannin (100 nM) or PD98059 (30 M) partially attenuated the IGF-1 effect. PKC down-regulation had no effect on JNK inhibition by IGF-1. While IGF-1 alone produced a strong phosphorylation of Akt/PKB in hVSMCs up to 6 h, it was notably stronger and more sustained during ratmyc and hVSMCs apoptosis inhibition. Further, whereas transient expression of phosphorylated Akt protected VSMCs from apoptosis by nearly 50%, expression of dominant interfering alleles of Akt or PDK1 strongly inhibited IGF-1-mediated VSMC survival. These results demonstrate for the first time that transient inhibition of a pro-apoptotic stimulus in VSMCs may be sufficient to inhibit a programmed cell death and that sustained anti-apoptotic signals (Akt) elicited by IGF-1 are augmented during a death stimulus. Furthermore, PI3-K and ERK-MAPK pathways may cooperate to protect VSMCs from cell death.This work was supported by a grant from the Nebraska cancer and Smoking Related Disease Program, Department of Health, Nebraska, and National Institutes of Health Grants R01HL070885 (D.K.A.) and R01HL073349 (D.K.A.).  相似文献   

19.
Recombinant Wnt-3a stimulated the rapid formation of elongated processes in Ewing sarcoma family tumor (ESFT) cells that were identified as neurites. The processes stained positively for polymerized actin and microtubules as well as synapsin I and growth-associated protein 43. Inhibition of the Wnt receptor, Frizzled3 (Fzd3), with antiserum or by short interfering RNA (siRNA) markedly reduced neurite extension. Knockdown of Dishevelled-2 (Dvl-2) and Dvl-3 also suppressed neurite outgrowth. Surprisingly, disruption of the Wnt/Fzd/lipoprotein receptor-related protein (LRP) complex and the associated beta-catenin signaling by treating cells either with the Wnt antagonist Dickkopf-1 (Dkk1) or LRP5/LRP6 siRNA enhanced neuritogenesis. Neurite outgrowth induced by Dkk1 or with LRP5/LRP6 siRNA was inhibited by secreted Fzd-related protein 1, a Wnt antagonist that binds directly to Wnt. Moreover, Dkk1 stimulation of neurite outgrowth was blocked by Fzd3 siRNA. These results suggested that Dkk1 shifted endogenous Wnt activity from the beta-catenin pathway to Fzd3-mediated, noncanonical signaling that is responsible for neurite formation. In particular, c-Jun amino-terminal kinase (JNK) was important for neurite outgrowth stimulated by both Wnt-3a and Dkk1. Our data demonstrate that Fzd3, Dvl, and JNK activity mediate Wnt-dependent neurite outgrowth and that ESFT cell lines will be useful experimental models for the study of Wnt-dependent neurite extension.  相似文献   

20.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号