首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatographic method for the quantitation of finasteride in human plasma is presented. The method is based on liquid–liquid extraction with hexane–isoamylalcohol (98:2, v/v) and reversed-phase chromatography with spectrophotometric detection at 210 nm. The mobile phase consists of acetonitrile–15 mM potassium dihydrogenphosphate (40:60, v/v). Clobazam is used as the internal standard. The limit of quantitation is 4 ng/ml and the calibration curve is linear up to 300 ng/ml. Within-day and between-day precision expressed by relative standard deviation is less than 5% and inaccuracy does not exceed 8%. The assay was used for pharmacokinetic studies.  相似文献   

2.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

3.
A rapid high-performance liquid chromatographic method for the quantitation of citalopram in human plasma is presented. The sample preparation involved liquid–liquid extraction of citalopram with hexane–isoamyl alcohol (98:2 v/v) and back-extraction of the drug to 0.02 M hydrochloric acid. Liquid chromatography was performed on a cyano column (45×4.6 mm, 5 μm particles), the mobile phase consisted of an acetonitrile–phosphate buffer, pH 6.0 (50:50, v/v). The run time was 2.6 min. The fluorimetric detector was set at an excitation wavelength of 236 nm and an emission wavelength of 306 nm. Verapamil was used as the internal standard. The limit of quantitation was 0.96 ng/ml using 1 ml of plasma. Within- and between-day precision expressed by relative standard deviation was less than 7% and inaccuracy did not exceed 6%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

4.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

5.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

6.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

7.
A sensitive and very specific method, using liquid chromatography–electrospray mass spectrometry (LC–ES-MS), was developed for the determination of epirubicin, doxorubicin, daunorubicin, idarubicin and the respective active metabolites of the last three, namely doxorubicinol, daunorubicinol and idarubicinol in human serum, using aclarubicin as internal standard. Once thawed, 0.5-ml serum samples underwent an automated solid-phase extraction, using C18 Bond Elut cartridges (Varian) and a Zymark Rapid-Trace robot. After elution of the compounds with chloroform–2-propanol (4:1, v/v) and evaporation, the residue was reconstituted with a mixture of 5 mM ammonium formate buffer (pH 4.5)–acetonitrile (60:40, v/v). The chromatographic separation was performed using a Symmetry C18, 3.5 μm (150×1 mm I.D.) reversed-phase column, and a mixture of 5 mM ammonium formate buffer (pH 3)–acetonitrile (70:30, v/v) as mobile phase, delivered at 50 μl/min. The compounds were detected in the selected ion monitoring mode using, as quantitation ions, m/z 291 for idarubicin and idarubicinol, m/z 321 for daunorubicin and daunorubicinol, m/z 361 for epirubicin and doxorubicin, m/z 363 for doxorubicinol and m/z 812 for aclarubicin (I.S.). Extraction recovery was between 71 and 105% depending on compounds and concentration. The limit of detection was 0.5 ng/ml for daunorubicin and idarubicinol, 1 ng/ml for doxorubicin, epirubicin and idarubicin, 2 ng/ml for daunorubicinol and 2.5 ng/ml for doxorubicinol. The limit of quantitation (LOQ) was 2.5 ng/ml for doxorubicin, epirubicin and daunorubicinol, and 5 ng/ml for daunorubicin, idarubicin, doxorubicinol and idarubicinol. Linearity was verified from these LOQs up to 2000 ng/ml for the parent drugs (r≥0.992) and 200 ng/ml for the active metabolites (r≥0.985). Above LOQ, the within-day and between-day precision relative standard deviation values were all less than 15%. This assay was applied successfully to the analysis of human serum samples collected in patients administered doxorubicin or daunorubicin intravenously. This method is rapid, reliable, allows an easy sample preparation owing to the automated extraction and a high selectivity owing to MS detection.  相似文献   

8.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

9.
A high-performance liquid chromatographic assay method for the quantitation of ipecac alkaloids (cephaeline and emetine) in human plasma and urine is described. Human plasma or urine was extracted with diethylether under alkaline conditions following the addition of an internal standard. Concentrations of alkaloids and internal standard were determined by octadecylsilica chromatographic separation (Symmetry C18 columns, plasma analysis; 15 cm×4.6 mm I.D., 5 μm particle size, urine analysis; 7.5 cm×4.6 mm I.D., 5 μm particle size). The mobile phase consisted of buffer (20 mmol/l 1-heptanesulfonic acid sodium salt, adjusted to pH 4.0 with acetic acid)–methanol (51:49, v/v). Eluate fluorescence was monitored at 285/316 nm. The lowest quantitation limits of cephaeline and emetine were 1 and 2.5 ng/ml, respectively, in plasma, and 5 ng/ml in urine. Intra- and inter-day relative standard deviations were below 15%. The assay is sensitive, specific and applicable to pharmacokinetic studies in humans.  相似文献   

10.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

11.
A specific, accurate, precise and reproducible assay for the quantitation of a novel indolylpiperazine anti-migraine agent (I) in plasma from various animal species is described. The method involves addition of internal standard (I.S.) and 1.0 M sodium carbonate to the plasma sample, vortex-mixing and extraction with ethylene dichloride. The organic layer is then back-extracted in a buffer consisting of 0.1 M tetramethylammonium hydroxide (TMAH), pH 3.0 and 0.1 M (NH4)2HPO4, pH 3.0, in water. The aqueous layer is injected on to a Zorbax cyano analytical column with a mobile phase consisting of acetonitrile, methanol and water (15:5:80, v/v/v) with 0.01 M TMAH, pH 3.0 and 0.01 M (NH4)2HPO4, pH 3.0. The eluate is monitored by electrochemical detection at 0.9 V (guard cell), 0.5 V (detector 1) and 0.8 V (detector 2). The retention times of I and I.S. were 7 and 10 min, respectively. In drug-free control plasma, there were no interfering peaks seen at the retention times of I or I.S. The standard curve was linear over the concentration range of 5–500 ng/ml in rat, monkey, mouse and rabbit plasma. The lower limit of quantitation in all four matrices was 5.0 ng/ml. Within- and between-assay variability of quality control samples was less than 9% relative standard deviation and the predicted concentration of the quality control samples deviated by less than 15% from the nominal concentration. The stability of I was established for up to 36 h in the autosampler tray, up to 10 months in plasma at −20°C and up to 2 h in plasma at room temperature. The assay is validated for determination of I in plasma.  相似文献   

12.
A sensitive high-performance liquid chromatographic (HPLC) method for the quantitation of famotidine in human plasma is described. Clopamide was used as the internal standard. Plasma samples were extracted with diethyl ether to eliminate endogenous interferences. Plasma samples were then extracted at alkaline pH with ethyl acetate. Famotidine and the internal standard were readily extracted into the organic solvent. After evaporation of ethyl acetate, the residue was analysed by HPLC. The chromatographic separation was accomplished with an isocratic mobile phase consisting of acetonitrile—water (12:88, v/v) containing 20 mM disodium hydrogenphosphate and 50 mM sodium dodecyl sulphate, adjusted to pH 3. The HPLC microbore column was packed with 5 μm ODS Hypersil. Using ultraviolet detection at 267 nm, the detection limit for plasma famotidine was 5 ng/ml. The calibration curve was linear over the concentration range 5–500 ng/ml. The inter- and intra-assay coefficients of variation were found to be less than 10%. Applicability of the method was demonstrated by a bioavailability/pharmacokinetic study in normal volunteers who received 80 mg famotidine orally.  相似文献   

13.
A high-performance liquid chromatographic assay with UV detection has been developed for the determination of ketoconazole in human plasma. Quantitative extraction was achieved by a single solvent extraction involving a mixture of acetonitrile–n-butyl chloride (1:4, v/v). Ketoconazole and the internal standard (clotrimazole) were separated on a column packed with Inertsil ODS-80A material and a mobile phase composed of water–acetonitrile–tetrahydrofuran–ammonium hydroxide–triethylamine (45:50.2:2.5:0.1:0.1, v/v). The column effluent was monitored at a wavelength of 206 nm with a detector range set at 0.5. The calibration graph was linear in the range of 20–2000 ng/ml, with a lower limit of quantitation of 20.0 ng/ml. The extraction recoveries for ketoconazole and clotrimazole in human plasma were 93±9.7% and 83±10.0%, respectively. The developed method has been successfully applied to a clinical study to examine the pharmacokinetics of ketoconazole in a cancer patient.  相似文献   

14.
A sensitive and specific high-performance liquid chromatographic (HPLC) method with UV detection was developed for the determination of minocycline in human plasma and parotid saliva samples. Samples were extracted using an Oasis™ HLB cartridge and were injected into a C8 Nucleosil column. The HPLC eluent contained acetonitrile–methanol–distilled water–0.1% trifluoroacetic acid (25:2:72.9:0.1, v/v). Demeclocycline was used as internal standard. The assay showed linearity in the tested range of 0.1–25 μg/ml. The limit of quantitation was 100 ng/ml. Recovery from plasma or parotid saliva averaged 95%. Precision expressed as %CV was in the range 0.2–17% (limit of quantitation). Accuracy ranged from 93 to 111%. In the two matrices studied at 20 and 4°C, rapid degradation of the drug occurred. Frozen at −30°C, this drug was stable for at least 2 months, the percent recovery averaged 90%. The method’s ability to quantify minocycline with precision, accuracy and sensitivity makes it useful in pharmacokinetic studies.  相似文献   

15.
A simple high-performance liquid chromatographic procedure was developed for the determination of ranitidine in human plasma. The method entailed direct injection of the plasma samples after deproteination using perchloric acid. The chromatographic separation was accomplished with an isocratic elution using mobile phase consisting of 21 mM disodium hydrogen phosphate–triethylamine-acetonitrile (1000:60:150, v/v), pH 3.5. Analyses were run at a flow-rate of 1.3 ml/min using a μbondapak C18 column and ultraviolet detection at a wavelength of 320 nm. The method was specific and sensitive, with a quantification limit of approximately 20 ng/ml and a detection limit of 5 ng/ml at a signal-to-noise ratio of 3:1. The mean absolute recovery was about 96%, while the within- and between-day coefficient of variation and percent error values of the assay method were all less than 8%. The linearity was assessed in the range of 20–1000 ng/ml plasma, with a correlation coefficient of greater than 0.999. This method has been used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

16.
A rapid, simple reversed-phase high-performance liquid chromatographic method with ultraviolet absorbance detection has been developed for the determination of calcium dobesilate in human plasma. Sample processing is based on an ion-pairing extraction with tetra-n-butylammonium hydroxide as cationic pairing ion and dichloromethane. Separation of the investigated calcium dobesilate and 2,4-dihydroxybenzoic acid as internal standard was achieved on a Discovery RP-Amide C16 analytical column with 50 mM, pH 2.5, potassium dihydrogenphosphate buffer–acetonitrile (75:25, v/v) mobile phase. The wavelength was set at 305 nm. The limit of quantitation is 100 ng/ml and the calibration curve is linear up to 50 μg/ml. Within-day and between-day precision expressed as the relative standard deviation is about 10% and the accuracy of the determination did not deviate from 100% by more than ±10%. The developed method was found to be suitable for application in human bioequivalence studies.  相似文献   

17.
An isocratic HPLC method was developed and validated for the quantitation of methocarbamol in human plasma. Methocarbamol and internal standard in 200 μl of human plasma were extracted with ethyl acetate, evaporated to dryness and reconstituted in water. Separation was achieved on a reversed-phase C18 column with a mobile phase of methanol—0.1 M potassium phosphate monobasic—water (35:10:55, v/v/v). The detection was by ultraviolet at 272 nm. Linearity was established at 1–100 μg/ml (r > 0.999). The limit of quantitation was designed as 1 μg/ml to suit pharmacokinetic studies. Inter-day precision and accuracy of the calibration standards were 1.0 to 3.6% coefficients of variance (C.V.) and −2.0 to +1.6% relative error (R.E.). Quality controls of 3, 20 and 70 μg/ml showed inter-day precision and accuracy of 2.5 to 3.6% C.V. and −0.9 to −0.4% R.E. Recovery of methocarbamol was 91.4–100.3% in five different lots of plasma. The method was shown to be applicable on different brands of C18 columns.  相似文献   

18.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

19.
A modified method for the determination of gacyclidine enantiomers in human plasma by GC–MS with selected-ion monitoring using the deuterated derivative of gacyclidine (d3-gacyclidine) as internal standard was developed. Following a single-step liquid–liquid extraction with hexane, drug enantiomers were separated on a chiral fused-silica capillary column (CP-Chirasil-Dex; Chrompack). The fragment ion, m/z 266, was selected for monitoring d3-gacyclidine (retention times of 35.2 and 35.6 min for the (+)- and (−)-enantiomer, respectively) whereas the fragment ion, m/z 263, was selected for quantitation of gacyclidine (retention times of 35.4 and 35.9 min for the (+)- and (−)-enantiomer, respectively). The limit of quantitation for each enantiomer was 0.3 ng/ml, using 1 ml of sample, with a relative standard deviation (RSD) <14% and a signal-to-noise ratio of 5. The extraction recovery of both gacyclidine enantiomers from human plasma was about 75%. The calibration curves were linear (r2>0.996) over the working range of 0.312 to 20 ng/ml. Within- and between-day RSD were <9% at 5, 10 and 20 ng/ml, and <16% at 0.312, 0.625, 1.25 and 2.5 ng/ml. Intraday and interday bias were less than 11% for both enantiomers. The chromatographic behavior of d3-gacyclidine remained satisfactory even after more than 500 injections. Applicability of this specific and stereoselective assay is demonstrated for a clinical pharmacokinetic study with racemic gacyclidine.  相似文献   

20.
A sensitive and selective reversed-phase LC–ESI-MS method to quantitate perifosine in human plasma was developed and validated. Sample preparation utilized simple acetonitrile precipitation without an evaporation step. With a Develosil UG-30 column (10×4 mm I.D.), perifosine and the internal standard hexadecylphosphocholine were baseline separated at retention times of 2.2 and 1.1 min, respectively. The mobile phase consisted of eluent A, 95% 9 mM ammonium formate (pH 8) in acetonitrile–eluent B, 95% acetonitrile in 9 mM ammonium formate (pH 8) (A–B, 40:60, v/v), and the flow-rate was 0.5 ml/min. The detection utilized selected ion monitoring in the positive-mode at m/z 462.4 and 408.4 for the protonated molecular ions of perifosine and the internal standard, respectively. The lower limit of quantitation of perifosine was 4 ng/ml in human plasma, and good linearity was observed in the 4–2000 ng/ml range fitted by linear regression with 1/x weight. The total LC–MS run time was 5 min. The validated LC–MS assay was applied to measure perifosine plasma concentrations from patients enrolled on a phase I clinical trial for pharmacokinetic/pharmacodynamic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号