首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingosine 1-phosphate (S1P) has been shown to regulate expression of several genes in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating epidermal growth factor receptor (EGFR) expression by S1P in aortic VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced EGFR mRNA and protein expression in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and phosphatidylinositide 3-kinase (PI3K; wortmannin), and transfection with dominant negative mutants of ERK and Akt, respectively. These results suggested that S1P-induced EGFR expression was mediated through p42/p44 MAPK and PI3K/Akt pathways in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt which was attenuated by U0126 and wortmannin, respectively. Furthermore, S1P-induced EGFR upregulation was blocked by a selective NF-kappaB inhibitor helenalin. Immunofluorescent staining and reporter gene assay revealed that S1P-induced activation of NF-kappaB was blocked by wortmannin, but not by U0126, suggesting that activation of NF-kappaB was mediated through PI3K/Akt. Moreover, S1P-induced EGFR expression was inhibited by an AP-1 inhibitor curcumin and tanshinone IIA. S1P-stimulated AP-1 subunits (c-Jun and c-Fos mRNA) expression was attenuated by U0126 and wortmannin, suggesting that MEK and PI3K/ERK cascade linking to AP-1 was involved in EGFR expression. Upregulation of EGFR by S1P may exert a phenotype modulation of VSMCs. This hypothesis was supported by pretreatment with AG1478 or transfection with shRNA of EGFR that attenuated EGF-stimulated proliferation of VSMCs pretreated with S1P, determined by XTT assay. These results demonstrated that in VSMCs, activation of Akt/NF-kappaB and ERK/AP-1 pathways independently regulated S1P-induced EGFR expression in VSMCs. Understanding the mechanisms involved in S1P-induced EGFR expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

2.
Kim SE  Choi KY 《Cellular signalling》2007,19(7):1554-1564
WNT3a stimulates proliferation of NIH3T3 cells via activation of the extracellular signal-regulated kinase (ERK) pathway. The RAF-1-->MEK-->ERK cascade was immediately increased by WNT3a treatment, however, the upstream event triggering ERK pathway activation by WNT3a is not clear. WNT3a activated RAS and WNT3a-induced ERK activation was blocked by dominant-negative RAS, indicating that WNT3a might act upstream of RAS. WNT3a-induced ERK pathway activations were blocked by AG1478, the epidermal growth factor receptor (EGFR) inhibitor, and EGFR siRNA. The WNT3a-induced ERK pathway activation was not observed in fibroblasts retaining defective EGFR, but the WNT3a effect was restored by EGFR reconstitution. These results indicate involvement of EGFR in the WNT3a-induced ERK pathway activation. WNT3a-induced motility and cytoskeletal rearrangement as well as proliferation of NIH3T3 cells were blocked by AG1478 and EGFR siRNA or abolished in EGFR knock-out fibroblasts, indicating involvement of EGFR in those cellular processes. WNT3a-induced ERK pathway activation was not affected by Dickkoff-1 (DKK-1), although WNT3a-induced activations of the WNT/beta-catenin pathway and proliferation were reduced by DKK-1. EGFR is involved in WNT3a-induced proliferation via both routes dependent on and independent of the WNT/beta-catenin pathway. These results indicate that WNT3a stimulates proliferation and motility of NIH3T3 fibroblasts via EGFR-mediated ERK pathway activation.  相似文献   

3.
Epidermal growth factor receptor (EGFR), a receptor often expressed in nasopharyngeal carcinoma (NPC) cells, is one of the recently identified molecular targets in cancer treatment. In the present study, the effects of combined treatment of Zn‐BC‐AM PDT with an EGFR inhibitor AG1478 were investigated. Well‐differentiated NPC HK‐1 cells were subjected to PDT with 1 µM of Zn‐BC‐AM and were irradiated at a light dose of 1 J/cm2 in the presence or absence of EGFR inhibitor AG1478. Specific protein kinase inhibitors of downstream EGFR targets were also used in the investigation. EGFR, Akt, and ERK were found constitutively activated in HK‐1 cells and the activities could be inhibited by the EGFR inhibitor AG1478. A sub‐lethal concentration of AG1478 was found to further enhance the irreversible cell damage induced by Zn‐BC‐AM PDT in HK‐1 cells. Pre‐incubation of the cells with specific inhibitors of EGFR (AG1478), PI3k/Akt (LY294002), or MEK/ERK (PD98059) before light irradiation were found to enhance Zn‐BC‐AM PDT‐induced formation of apoptotic cells. The efficacy of Zn‐BC‐AM PDT can be increased through the inhibition of EGFR/PI3K/Akt and EGFR/MEK/ERK signaling pathways in NPC cells. Combination therapy with Zn‐BC‐AM PDT and EGFR inhibitors may further be developed for the treatment of advanced NPC. J. Cell. Biochem. 108: 1356–1363, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
该文探讨了乳腺癌细胞中表皮生长因子(EGF)介导的MEK非依赖性ERK激活通路。Western blot检测EGF刺激下,siRNA抑制MEK1/2后的T47D细胞的p-ERK水平,以验证T47D细胞中存在EGF介导的MEK非依赖性ERK激活的通路。接着使用可能参与MEK非依赖性ERK激活的激酶的小分子抑制剂抑制相关激酶(AC、PKC、Src、PI3K、PDK1和Akt)活性后,检测T47D细胞EGF介导ERK的磷酸化水平。siRNA抑制MEK1/2表达后,T47D细胞在EGF刺激后的仍保留部分p-ERK,即在T47D细胞中,存在EGF介导的MEK非依赖性的ERK磷酸化通路。小分子抑制剂抑制AC、PKC、Src对MEK非依赖性ERK激活途径影响不大。而使用小分子抑制剂抑制PI3K、PDK1和Akt后,ERK的磷酸化水平显著降低,提示PI3K/Akt通路下游的激酶参与T47D中EGF介导的MEK非依赖性ERK激活途径。siRNA干扰PI3K/Akt通路下游PBK/TOPK后并使用U0126抑制MEK功能后,几乎检测不到p-ERK,提示PBK/TOPK参与T47D细胞中EGF介导的MEK非依赖性ERK激活途径。乳腺癌抗雌激素药物耐药株T47D细胞存在EGF介导的MEK非依赖性ERK激活途径,且该途径受PI3K/Akt下游的PBK/TOPK调控。  相似文献   

5.
Urokinase-type plasminogen activator (uPA) and vitronectin activate cell-signaling pathways by binding to the uPA receptor (uPAR). Because uPAR is glycosylphosphatidylinositol-anchored, the signaling receptor is most likely a uPAR-containing multiprotein complex. This complex may be heterogeneous within a single cell and among different cell types. The goal of this study was to elucidate the role of the EGF receptor (EGFR) as a component of the uPAR-signaling machinery. uPA activated extracellular signal-regulated kinase (ERK) in COS-7 cells and in COS-7 cells that overexpress uPAR, and this response was blocked by the EGFR inhibitor, tyrphostin AG1478, implicating the EGFR in the pathway that links uPAR to ERK. By contrast, Rac1 activation, which occurred as a result of uPAR overexpression, was EGFR-independent. COS-7 cell migration was stimulated, in an additive manner, by uPAR-dependent pathways leading to ERK and Rac1. AG1478 inhibited only the ERK-dependent component of the response. CHO-K1 cells do not express EGFR; however, these cells demonstrated ERK activation in response to uPA, indicating the presence of an EGFR-independent alternative pathway. As anticipated, this response was insensitive to AG1478. When CHO-K1 cells were transfected to express EGFR or a kinase-inactive mutant of EGFR, ERK activation in response to uPA was unchanged; however, the EGFR-expressing cells acquired sensitivity to AG1478. We conclude that the EGFR may function as a transducer of the signal from uPAR to ERK, but not Rac1. In the absence of EGFR, an alternative pathway links uPAR to ERK; however, this pathway is apparently silenced by EGFR expression.  相似文献   

6.
Activation of p70 S6 kinase (p70(S6K)) by growth factors requires multiple signal inputs involving phosphoinositide 3-kinase (PI3K), its effector Akt, and an unidentified kinase that phosphorylates Ser/Thr residues (Ser(411), Ser(418), Ser(424), and Thr(421)) clustered at its autoinhibitory domain. However, the mechanism by which G protein-coupled receptors activate p70(S6K) remains largely uncertain. By using vascular smooth muscle cells in which we have demonstrated Ras/extracellular signal-regulated kinase (ERK) activation through Ca(2+)-dependent, epidermal growth factor (EGF) receptor transactivation by G(q)-coupled angiotensin II (Ang II) receptor, we present a unique cross-talk required for Ser(411) phosphorylation of p70(S6K) by Ang II. Both p70(S6K) Ser(411) and Akt Ser(473) phosphorylation by Ang II appear to involve EGF receptor transactivation and were inhibited by dominant-negative Ras, whereas the phosphorylation of p70(S6K) and ERK but not Akt was sensitive to the MEK inhibitor. By contrast, the phosphorylation of p70(S6K) and Akt but not ERK was sensitive to PI3K inhibitors. Similar inhibitory pattern on these phosphorylation sites by EGF but not insulin was observed. Taken together with the inhibition of Ang II-induced p70(S6K) activation by dominant-negative Ras and the MEK inhibitor, we conclude that Ang II-initiated activation of p70(S6K) requires both ERK cascade and PI3K/Akt cascade that bifurcate at the point of EGF receptor-dependent Ras activation.  相似文献   

7.
We examined therole of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinaseactivation in G protein-coupled receptor (GPCR) agonist-inducedmitogenesis in Swiss 3T3 and Rat-1 cells. Addition of EGFR tyrosinekinase inhibitors (e.g., tyrphostin AG-1478) abrogated bombesin-inducedextracellular signal-regulated kinase (ERK) activation in Rat-1 cellsbut not in Swiss 3T3 cells, indicating the importance of cell contextin determining the role of EGFR in ERK activation. In strikingcontrast, treatment with tyrphostin AG-1478 markedly (~70%)inhibited DNA synthesis induced by bombesin in both Swiss 3T3 and Rat-1cells. Similar inhibition of bombesin-induced DNA synthesis in Swiss3T3 cells was obtained using four structurally different inhibitors ofEGFR tyrosine kinase. Furthermore, kinetic analysis indicates that EGFRfunction is necessary for bombesin-induced mitogenesis in mid-lateG1 in both Swiss 3T3 and Rat-1 cells. Our results indicatethat EGFR kinase activity is necessary in mid-late G1 forpromoting the accumulation of cyclins D1 and E and implicate EGFRfunction in the coupling of GPCR signaling to the activation of thecell cycle.

  相似文献   

8.
9.
The mechanism by which neurotensin (NT) promotes the growth of prostate cancer epithelial cells is not yet defined. Here, androgen-independent PC3 cells, which express high levels of the type 1 NT-receptor (NTR1), are used to examine the involvement of epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (ERK, SAPK/JNK and p38), PI3 kinase and PKC in the mitogenic effect of NT. NT dose dependently (0.1–30 nM) enhanced phosphorylation of EGFR, ERK and Akt, reaching maximal levels within 3 min as measured by Western blotting. These effects were associated with an accumulation of EGF-like substance(s) in the medium (assayed by EGFR binding) and a 2-fold increase in DNA synthesis (assayed by [3H]thymidine incorporation). The DNA synthesis enhancement by NT was non-additive with that of EGF. The NT-induced stimulation of EGFR/ERK/Akt phosphorylation and DNA synthesis was inhibited by EGFR-tyrosine kinase inhibitors (AG1478, PD153035), metallo-endopeptidase inhibitor phosphoramidon and by heparin, but not by neutralizing anti-EGF antibody. Thus, transactivation of EGFR by NT involved heparin-binding EGF (HB-EGF or amphiregulin) rather than EGF. The effects of NT on EGFR/ERK/Akt activation and DNA synthesis were attenuated by PLC-inhibitor (U73122), PKC-inhibitors (bisindolylmaleimide, staurosporine, rottlerin), MEK inhibitor (U0126) and PI3 kinase inhibitors (wortmannin, LY 294002). We conclude that NT stimulated mitogenesis in PC3 cells by a PKC-dependent ligand-mediated transactivation of EGFR, which led to stimulation of the Raf–MEK–ERK pathway in a PI3 kinase-dependent manner.  相似文献   

10.
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.  相似文献   

11.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

12.
We have previously shown that muscarinic acetylcholine receptors (mAChRs) enhance SNU-407 colon cancer cell proliferation via the ERK1/2 pathway. Here, we examined the signaling pathways linking mAChR stimulation to ERK1/2 activation and the subsequent proliferation of SNU-407 cells. The inhibition of the epidermal growth factor receptor (EGFR) by AG1478 or protein kinase C (PKC) by GF109203X significantly reduced carbachol-stimulated ERK1/2 activation and cell proliferation. Cotreatment of the cells with AG1478 and GF109203X produced an additive effect on carbachol-stimulated ERK1/2 activation, suggesting that the EGFR and PKC pathways act in parallel. The p90 ribosomal S6 kinases (RSKs) are downstream effectors of ERK1/2 and are known to have important roles in cell proliferation. In SNU-407 cells, carbachol treatment induced RSK activation in an atropine-sensitive manner, and this RSK activation was decreased by the inhibition of either EGFR or PKC. Moreover, the RSK-specific inhibitor BRD7389 almost completely blocked carbachol-stimulated cell proliferation. Together, these data indicate that EGFR and PKC are involved in mAChR-mediated activation of ERK1/2 and RSK and the subsequent proliferation of SNU-407 colon cancer cells.  相似文献   

13.
Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway.  相似文献   

14.
15.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

16.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

17.
Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.  相似文献   

18.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

19.
20.
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts’ functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号