首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Zhao X  Sun Y  Pu J  Fan L  Shi W  Hu Y  Yang J  Xu Q  Wang J  Hou D  Ma G  Liu J 《PloS one》2011,6(7):e22091
Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.  相似文献   

2.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

3.
Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-like H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3′ end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.  相似文献   

4.
正Dear Editor,As we known,pigs play a vital role as genetic mixing vessels for human and avian influenza viruses as their tracheal epitheliums possess both sialic acid a-2,6-Gal and a-2,3-Gal receptors(Ma et al.2008),and swine influenza viruses occasionally infect humans(Shinde et al.2009).The Eurasian avian-like swine influenza A(H1N1)virus  相似文献   

5.
We report here the complete genomic sequence of an avian-like H4N8 swine influenza virus containing an H5N1 avian influenza virus segment from swine in southern China. Phylogenetic analyses of the sequences of all eight viral RNA segments demonstrated that these are wholly avian influenza viruses of the Asia lineage. To our knowledge, this is the first report of interspecies transmission of an avian H4N8 influenza virus to domestic pigs under natural conditions.  相似文献   

6.

Background

Human-like H3N2 influenza viruses have repeatedly been transmitted to domestic pigs in different regions of the world, but it is still uncertain whether any of these variants could become established in pig populations. The fact that different subtypes of influenza viruses have been detected in pigs makes them an ideal candidate for the genesis of a possible reassortant virus with both human and avian origins. However, the determination of whether pigs can act as a “mixing vessel” for a possible future pandemic virus is still pending an answer. This prompted us to gather the epidemiological information and investigate the genetic evolution of swine influenza viruses in Jilin, China.

Methods

Nasopharyngeal swabs were collected from pigs with respiratory illness in Jilin province, China from July 2007 to October 2008. All samples were screened for influenza A viruses. Three H3N2 swine influenza virus isolates were analyzed genetically and phylogenetically.

Results

Influenza surveillance of pigs in Jilin province, China revealed that H3N2 influenza viruses were regularly detected from domestic pigs during 2007 to 2008. Phylogenetic analysis revealed that two distinguishable groups of H3N2 influenza viruses were present in pigs: the wholly contemporary human-like H3N2 viruses (represented by the Moscow/10/99-like sublineage) and double-reassortant viruses containing genes from contemporary human H3N2 viruses and avian H5 viruses, both co-circulating in pig populations.

Conclusions

The present study reports for the first time the coexistence of wholly human-like H3N2 viruses and double-reassortant viruses that have emerged in pigs in Jilin, China. It provides updated information on the role of pigs in interspecies transmission and genetic reassortment of influenza viruses.  相似文献   

7.
Novel H3N2 influenza viruses (H3N2v) containing seven genome segments from swine lineage triple-reassortant H3N2 viruses and a 2009 pandemic H1N1 (H1N1pdm09) matrix protein segment (pM) were isolated from 12 humans in the United States between August and December 2011. To understand the evolution of these novel H3N2 viruses in swine and humans, we undertook a phylogenetic analysis of 674 M sequences and 388 HA and NA sequences from influenza viruses isolated from North American swine during 2009-2011, as well as HA, NA, and M sequences from eight H3N2v viruses isolated from humans. We identified 34 swine influenza viruses (termed rH3N2p) with the same combination of H3, N2, and pM segments as the H3N2v viruses isolated from humans. Notably, these rH3N2p viruses were generated in swine via reassortment events between H3N2 viruses and the pM segment approximately 4 to 10 times since 2009. The pM segment has also reassorted with multiple distinct lineages of H1 virus, especially H1δ viruses. Importantly, the N2 segment of all H3N2v viruses isolated from humans is derived from a genetically distinct N2 lineage that has circulated in swine since being acquired by reassortment with seasonal human H3N2 viruses in 2001-2002, rather than from the N2 that is associated with the 1998 H3N2 swine lineage. The identification of this N2 variant may have implications for influenza vaccine design and the potential pandemic threat of H3N2v to human age groups with differing levels of prior exposure and immunity.  相似文献   

8.
One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus with a PB2 gene from human-like HIN1, NS from classical swine H1NI, and the remaining genes from human-like H3N2 virus. These findings further support the concept that swine can serve as reservoir or mixing vessels of influenza virus strains and maintain genetic and antigenic stability of viruses. Furthermore, we have successfully established a reverse genetics system based on eight plasmids and rescued Sw/SD/3/2005 through cell transfection. HI tests and RT-PCR confirmed that the rescued virus maintained the biological properties of the wild type Sw/SD/3/2005. The successful establishment of the reverse genetics system of Sw/SD/3/2005 will enable us to conduct extensive studies of the molecular evolution of H3N2 influenza viruses in swine.  相似文献   

9.
We report here the complete genomic sequence of a novel avian-like H3N2 swine influenza virus containing an H5N1 highly pathogenic avian influenza virus segment that was obtained from swine in southern China. Phylogenetic analysis indicated that this virus might originate from domestic aquatic birds. The sequence information provided herein suggests that continuing study is required to determine if this virus can be established in the swine population and pose potential threats to public health.  相似文献   

10.
The 2009 pandemic influenza H1N1 (H1N1pdm) virus was generated by reassortment of swine influenza viruses of different lineages. This was the first influenza pandemic to emerge in over 4 decades and the first to occur after the realization that influenza pandemics arise from influenza viruses of animals. In order to understand the biological determinants of pandemic emergence, it is relevant to compare the tropism of different lineages of swine influenza viruses and reassortants derived from them with that of 2009 pandemic H1N1 (H1N1pdm) and seasonal influenza H1N1 viruses in ex vivo cultures of the human nasopharynx, bronchus, alveoli, and conjunctiva. We hypothesized that virus which can transmit efficiently between humans replicated well in the human upper airways. As previously reported, H1N1pdm and seasonal H1N1 viruses replicated efficiently in the nasopharyngeal, bronchial, and alveolar epithelium. In contrast, representative viruses from the classical swine (CS) (H1N1) lineage could not infect human respiratory epithelium; Eurasian avian-like swine (EA) (H1N1) viruses only infected alveolar epithelium and North American triple-reassortant (TRIG) viruses only infected the bronchial epithelium albeit inefficiently. Interestingly, a naturally occurring triple-reassortant swine virus, A/SW/HK/915/04 (H1N2), with a matrix gene segment of EA swine derivation (i.e., differing from H1N1pdm only in lacking a neuraminidase [NA] gene of EA derivation) readily infected and replicated in human nasopharyngeal and bronchial epithelia but not in the lung. A recombinant sw915 with the NA from H1N1pdm retained its tropism for the bronchus and acquired additional replication competence for alveolar epithelium. In contrast to H1N1pdm, none of the swine viruses tested nor seasonal H1N1 had tropism in human conjunctiva. Recombinant viruses generated by swapping the surface proteins (hemagglutinin and NA) of H1N1pdm and seasonal H1N1 virus demonstrated that these two gene segments together are key determinants of conjunctival tropism. Overall, these findings suggest that ex vivo cultures of the human respiratory tract provide a useful biological model for assessing the human health risk of swine influenza viruses.  相似文献   

11.
In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a “shelter” for hosting influenza virus from humans or birds and as a “mixing vessel” for generating reassortant influenza viruses, such as the one causing current influenza pandemic.  相似文献   

12.
H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.  相似文献   

13.
[目的]为了研究2006年从广西病猪肺组织中分离的H1N2亚型猪流感病毒(SIV)A/Swine/Guangxi/13/2006(H1N2)(Sw/Gx/13/06)的遗传学特性和8个基因的来源.[方法]运用RT PCR方法对其全基因进行了克隆并运用分子生物学软件对其基因序列进行了遗传进化分析.[结果]血凝素(HA)、核蛋白(NP)、基质蛋白(M)和非结构蛋白(NS)基因来源于猪古典H1N1亚型流感病毒;神经氨酸酶(NA)和聚合酶蛋白(PB1)基因来源于人的H3N2亚型流感病毒;聚合酶蛋白(PA)和聚合酶蛋白(PB2)基因来自于禽流感病毒.[结论]可见Sw/GX/13/06是一株"人-猪-禽"三源基因重排H1N2亚型SIV且与美国(1999-2001年)和韩国(2002年)分离到该型病毒的有明显的亲缘关系.据我们所知,这是中国首次报道含有禽流感病毒基因片段的重排H1N2 SIV,该病毒是否对养猪业和人类公共卫生健康具有潜在的威胁,有待于进一步研究.  相似文献   

14.
从山东各地疑似流感发病猪分离到10株流感病毒,经国家流感中心鉴定均为A型流感病毒H9N2亚型。将其中一株Sw/SD/1/2003(H9N2)的血凝素全基因(HA)进行克隆与测序,与GenBank收录的其它猪流感和禽流感H9N2亚型的HA基因进行比较,发现Sw/SD/1/2003(H9N2)的血凝素基因在核苷酸序列方面同广西1999年分离的禽流感毒株Ck/GX/99(H9N2)和2000年云南分离的禽流感毒株Ck/YN/2000(H9N2)的同源性最高;进化树分析表明Sw/SD/1/2003(H9N2)起源于禽源的H9N2亚型流感病毒;Sw/SD/1/2003的HA氨基酸裂解位点与其他H9N2亚型不问,Sw/SD/1/2003的HA氨基酸裂解位点是R-S-L-R-G,而其它猪流感和禽流感H9N2亚型都是R-S-S-R-G。  相似文献   

15.
2009年6月12日,江苏确诊首例甲型H1N1(2009)病例。通过细胞和鸡胚分离系统,我们分离到一株具有较高血凝活性的病毒,命名为A/Jiangsu/1/2009。为了跟踪病毒的变异情况,我们开展了病毒的全基因组测序工作,在此基础上对其血凝素基因(Haemagglutinin,HA)的遗传特性进行了详细研究。分离株HA蛋白不具有多碱基HA裂解位点,具有低致病性流感病毒特点。与参考株A/California/04/2009相比,分离株A/Jiangsu/1/2009HA蛋白的有4个氨基酸发生了突变,但都不在已知的抗原位点上。分离株有5个潜在糖基化位点,这与近年来古典猪H1N1和北美三源重配猪H1病毒完全一致,保留了古典猪H1的特点。与禽流感H1病毒相比,分离株HA蛋白受体结合位点上的E190D和G225D发生突变,这可能成为新甲型H1N1(2009)在人际间传播的一个重要分子基础。此外,其它受体结合位点上相关氨基酸同时具有人和猪流感病毒的特点。本研究首次对早期流行的甲型H1N1(2009)流感病毒的HA蛋白的分子遗传特征进行了详细研究,对进一步监测病原变异具有重要指导意义。  相似文献   

16.
Swine Influenza Virus (H1N1) is a known causative agent of swine flu. Transmission of Swine Influenza Virus form pig to human is not a common event and may not always cause human influenza. The 2009 outbreak by subtype H1N1 in humans is due to transfer of Swine Influenza Virus from pig to human. Thus to analyze the origin of this novel virus we compared two surface proteins (HA and NA) with influenza viruses of swine, avian and humans isolates recovered from 1918 to 2008 outbreaks. Phylogenetic analyses of hemagglutinin gene from 2009 pandemic found to be clustered with swine influenza virus (H1N2) circulated in U.S.A during the 1999-2004 outbreaks. Whereas, neuraminidase gene was clustered with H1N1 strains isolated from Europe and Asia during 1992-2007 outbreaks. This study concludes that the new H1N1 strain appeared in 2009 outbreak with high pathogenicity to human was originated as result of re-assortment (exchange of gene). Moreover, our data also suggest that the virus will remain sensitive to the pre-existing therapeutic strategies.  相似文献   

17.
从广东省疑似流感发病猪分离到1株H3N2亚型猪流感病毒(A/Swine/Guangdong/01/2005(H3N2)),对其各个基因进行克隆与测序,并与GenBank中收录的其它猪流感、禽流感和人流感的相关基因进行比较,结果表明,HA全基因与广东2003~2004年分离的H3N2猪流感毒株的核苷酸序列同源性在99%以上,与纽约90年代末分离的H3N2人流感毒株同源性在98.5%以上;NA基因与纽约1998~2000年分离的H3N2人流感毒株的核苷酸序列同源性在99%以上;NS基因、M基因的核苷酸序列与H1N1亚型猪流感毒株A/swine/HongKong/273/1994(H1N1)的核苷酸序列同源性较高,分别为97.9%、98.4%,与美洲A/swine/Iowa/17672/1988(H1N1)的核苷酸序列同源性分别为96.7%、97.1%;其他基因的核苷酸序列与H3N2人流感毒株具有很高的同源性。因此,推测其M和NS基因来源于H1N1亚型猪流感病毒,HA、NA及其他基因均来源于H3N2亚型人流感病毒。表明此H3N2亚型猪流感病毒为H3N2亚型人流感病毒和H1N1亚型猪流感病毒经基因重排而得到的重组病毒。  相似文献   

18.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   

19.
【目的】由于H7N9禽流感病毒能够感染鸡,并且已经变异成了高致病性毒株,因此,鸡群中H7N9禽流感疫苗的免疫是一个趋势,而鸡群免疫后抗体检测方法的建立也十分必要。本研究旨在建立一种灵敏、高效、高通量的鸡群H7N9亚型禽流感病毒抗体间接酶联免疫吸附试验(ELISA)检测方法。【方法】通过昆虫杆状病毒表达系统分别表达属于W1、W2-A和W2-B分支H7N9流感病毒的3种野生型血凝素(HA)蛋白,以及跨膜区(TM)置换为H3 HA TM的W2-B分支HA蛋白(H7-53TM)。4种HA蛋白经过离子交换层析纯化后作为抗原,通过ELISA检测H7N9禽流感病毒抗体。【结果】ELISA特异性、敏感性和重复性试验结果显示,跨膜区置换主要影响HA蛋白ELISA检测的重复性,以H7-53TM为抗原的ELISA方法具有较好的重复性,其批内和批间变异系数小于10%,然而3种野生型HA蛋白与部分血清反应批内和批间变异系数大于10%,重复性较差,因此选择H7-53TM蛋白作为ELISA包被抗原。通过受试者工作特征曲线(ROC曲线)分析,以H7-53TM为抗原的ELISA能够精准地区分H7N9亚型流感病毒抗体阳性和阴性血清。通过相关性分析,该ELISA方法与134份鸡血清HI试验结果具有显著强相关性(r=0.854 6,P0.000 1),并且与3个分支疫苗株免疫血清的HI试验结果也具有显著相关性(r0.5,P0.05)。【结论】跨膜区置换能够提高HA蛋白抗原检测H7N9禽流感病毒抗体的重复性,并应用跨膜区置换的HA蛋白建立了一种能够检测不同分支疫苗株免疫的H7N9亚型禽流感病毒抗体间接ELISA检测方法。  相似文献   

20.
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37°C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32°C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40°C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32°C and 37°C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32°C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32°C may represent a critical evolutionary step enabling human-to-human transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号