首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pistachio is one of the most commercially important nut trees in the world. To characterize the genetic controls of horticultural traits and facilitate marker-assisted breeding in pistachio, we constructed an SSR-based linkage map using an interspecific F1 population derived from a cross between the cultivar “Siirt” (Pistacia vera L.) and the monoecious Pa-18 genotype of Pistacia atlantica Desf. This population was also used for the first QTL analysis in pistachio on leaf and shoot characters. In total, 1312 SSR primers were screened, and 388 loci were successfully integrated into parental linkage maps. The Siirt maternal map contained 306 markers, while the “Pa-18” paternal map included 285 markers along the 15 linkage groups. The Siirt map spanned 1410.4 cM, with an average marker distance of 4.6 cM; the Pa-18 map covered 1362.5 cM with an average marker distance of 4.8 cM. Phenotypic data were collected during the growing seasons of 2015 and 2016 for four traits: leaf length (LL), leaf width (LW), leaf length/leaf width ratio (LWR), number of leaflet pairs (NLL), and young shoot color (YSC). A total of 17 QTLs were identified in the parental maps. Four QTLs for LL and LW were located on LG2 and LG4, while four QTLs for LWR ratio on LG13 and LG14, two QTLs for NLL and two QTLs for YSC were on LG7 and LG9, respectively, with similar positions in both parental maps. The SSR markers, linkage maps, and QTLs reported here will provide a valuable resource for future molecular and genetic studies in pistachio.  相似文献   

2.

Background

Restriction-site associated DNA sequencing (RADseq) technology was recently employed to identify a large number of single nucleotide polymorphisms (SNP) for linkage mapping of a North American and Eastern Asian Populus species. However, there is also the need for high-density genetic linkage maps for the European aspen (P. tremula) as a tool for further mapping of quantitative trait loci (QTLs) and marker-assisted selection of the Populus species native to Europe.

Results

We established a hybrid F1 population from the cross of two aspen parental genotypes diverged in their phenological and morphological traits. We performed RADseq of 122 F1 progenies and two parents yielding 15,732 high-quality SNPs that were successfully identified using the reference genome of P. trichocarpa. 2055 SNPs were employed for the construction of maternal and paternal linkage maps. The maternal linkage map was assembled with 1000 SNPs, containing 19 linkage groups and spanning 3054.9 cM of the genome, with an average distance of 3.05 cM between adjacent markers. The paternal map consisted of 1055 SNPs and the same number of linkage groups with a total length of 3090.56 cM and average interval distance of 2.93 cM. The linkage maps were employed for QTL mapping of one-year-old seedlings height variation. The most significant QTL (LOD = 5.73) was localized to LG5 (96.94 cM) of the male linkage map, explaining 18% of the phenotypic variation.

Conclusions

The set of 15,732 SNPs polymorphic in aspen and high-density genetic linkage maps constructed for the P. tremula intra-specific cross will provide a valuable source for QTL mapping and identification of candidate genes facilitating marker-assisted selection in European aspen.
  相似文献   

3.
Tobacco (Nicotiana tabacum L., 2n = 48) is an important agronomic crop and model plant. Flue-cured tobacco is the most important type and accounts for approximately 80 % of tobacco production worldwide. The low genetic diversity of flue-cured tobacco impedes the construction of a high-density genetic linkage map using simple sequence repeat (SSR) markers and warrants the exploitation of single nucleotide polymorphic (SNP) markers from genomic regions. In this article, initially using specific locus-amplified fragment sequencing, we discovered 10,891 SNPs that were subsequently used as molecular markers for genetic map construction. Combined with SSR markers, a final high-density genetic map was generated containing 4215 SNPs and 194 SSRs distributed on 24 linkage groups (LGs). The genetic map was 2662.43 cM in length, with an average distance of 0.60 cM between adjacent markers. Furthermore, by mapping the SNP markers to the ancestral genomes of Nicotiana tomentosiformis and Nicotiana sylvestris, a large number of genome rearrangements were identified as occurring after the polyploidization event. Finally, using this novel integrated map and mapping population, two major quantitative trait loci (QTLs) were identified for flue-curing and mapped to the LG6 of tobacco. This is the first report of SNP markers and a SNP-based linkage map being developed in tobacco. The high-density genetic map and QTLs related to tobacco curing will support gene/QTL fine mapping, genome sequence assembly and molecular breeding in tobacco.  相似文献   

4.
Specific-locus amplified fragment sequencing is a high-resolution method for genetic mapping, genotyping, and single nucleotide polymorphism (SNP) marker discovery. Previously, a major QTL for downy mildew resistance, BraDM, was mapped to linkage group A08 in a doubled-haploid population derived from Chinese cabbage lines 91–112 and T12–19. The aim of the present study was to improve the linkage map and identify the genetic factors involved in downy mildew resistance. We detected 53,692 high quality SLAFs, of which 7230 were polymorphic, and 3482 of the polymorphic markers were used in genetic map construction. The final map included 1064 bins on ten linkage groups and was 858.98 cM in length, with an average inter-locus distance of 0.81 cM. We identified six QTLs that are involved in downy mildew resistance. The four major QTLs, sBrDM8, yBrDM8, rBrDM8, and hBrDM8, for resistance at the seedling, young plant, rosette, and heading stages were mapped to A08, and are identical to BraDM. The two minor resistance QTLs, rBrDM6 (A06) and hBrDM4 (A04), were active at the rosette and heading stages. The major QTL sBrDM8 defined a physical interval of ~228 Kb on A08, and a serine/threonine kinase family gene, Bra016457, was identified as the possible candidate gene. We report here the first high-density bin map for Chinese cabbage, which will facilitate mapping QTLs for economically important traits and SNP marker development. Our results also expand knowledge of downy mildew resistance in Chinese cabbage and provide three SNP markers (A08-709, A08-028, and A08-018) that we showed to be effective when used in MAS to breed for downy mildew resistance in B. rapa.  相似文献   

5.
Seedlessness, flavor, and color are top priorities for mandarin (Citrus reticulata Blanco) cultivar improvement. Given long juvenility, large tree size, and high breeding cost, marker-assisted selection (MAS) may be an expeditious and economical approach to these challenges. The objectives of this study were to construct high-density mandarin genetic maps and to identify single nucleotide polymorphism (SNP) markers associated with fruit quality traits. Two parental genetic maps were constructed from an F1 population derived from ‘Fortune’ × ‘Murcott’, two mandarin cultivars with distinct fruit characters, using a 1536-SNP Illumina GoldenGate assay. The map for ‘Fortune’ (FOR) consisted of 189 SNPs spanning 681.07 cM and for ‘Murcott’ (MUR) consisted of 106 SNPs spanning 395.25 cM. Alignment of the SNP sequences to the Clementine (Citrus clementina) genome showed highly conserved synteny between the genetic maps and the genome. A total of 48 fruit quality quantitative trait loci (QTLs) were identified, and ten of them stable over two or more samplings were considered as major QTLs. A cluster of QTLs for flavedo color space values L, a, b, and a/b and juice color space values a and a/b were detected in a single genomic region on linkage group 4. Two carotenoid biosynthetic pathway genes, pds1 and ccd4, were found within this QTL interval. Several SNPs were potentially useful in MAS for these fruit characteristics. QTLs were validated in 13 citrus selections, which may be useful in further validation and tentative MAS in mandarin fruit quality improvement.  相似文献   

6.
Understanding the genetic bases of local adaptation in dominant conifer species is critical in predicting the impacts of rapid climate change on forest ecosystems. However, the genetic basis of adaptation is not yet fully understood due to the huge and complex genomes of conifers and the unavailability to date of suitable crossing material. In this study, we constructed a linkage map for Abies sachalinensis (2n = 24) and investigated quantitative trait loci (QTLs) associated with local adaptation along an altitudinal gradient. A segregating population of 239 seedlings was produced from a cross between two F1 hybrids (high-altitude × low-altitude genotypes). QTL mapping of phenological and growth traits was performed using a pseudo-testcross strategy with linkage maps based on 1251 single-nucleotide polymorphism (SNP) and three simple sequence repeat (SSR) markers. Two maps consisting of 12 linkage groups with an average marker interval of ca. 3 cM were constructed for each parent. The total lengths of the maps were 1861 and 1949 cM. A permutation test identified four significant QTLs and 11 additional suggestive QTLs, with high logarithm of odds (LOD) scores (> 3.0). This is the first highly saturated linkage map produced for Abies taxa. Our results suggest that spring bud phenology is controlled by several QTLs with moderate effects. The use of the mapping population created by crossing two hybrids (high × low altitude genotypes) and numerous SNP markers enabled us to investigate the genetic basis of adaptive traits in conifer species.  相似文献   

7.
Tea (Camellia sinensis) contains polyphenols and caffeine which have been found to be of popular interest in tea quality. Tea production relies on well-distributed rainfall which influence tea quality. Phenotypic data for two segregating tea populations TRFK St 504 and TRFK St 524 were collected and used to identify the quantitative trait loci (QTL) influencing tea biochemical and drought stress traits based on a consensus genetic map constructed using the DArTseq platform. The populations comprised 261 F1 clonal progeny. The map consisted of 15 linkage groups which corresponds to chromosome haploid number of tea plant (2n?=?2×?=?30) and spanned 1260.1 cM with a mean interval of 1.1 cM between markers. A total of 16 phenotypic traits were assessed in the two populations. Both interval and multiple QTL mapping revealed a total of 47 putative QTL in the 15 LGs associated with tea quality and percent relative water content at a significant genome-wide threshold of 5%. In total, six caffeine QTL, 25 catechins QTL, three theaflavins QTL, nine QTL for tea taster score, and three QTL for percent relative water contents were detected. Out of these 47 QTL, 19 QTL were identified for ten traits in three main regions on LG01, LG02, LG04, LG12, LG13, and LG14. The QTL associated with caffeine, individual catechins, and theaflavins were clustered mostly in LG02 and LG04 but in different regions on the map. The explained variance by each QTL in the population ranged from 5.5 to 56.6%, with an average of 9.9%. Identification of QTL that are tightly linked to markers associated with black tea quality coupled with UPLC assay may greatly accelerate development of novel tea cultivars owing to its amenability at seedling stage. In addition, validated molecular markers will contribute greatly to adoption of marker-assisted selection (MAS) for drought tolerance and tea quality improvement.  相似文献   

8.
Proso millet (Panicum miliaceum L.) is the cereal crop with the low water requirement and increasingly being used for human consumption. It is the most common rotational crop within wheat-based dryland production systems in the semiarid High Plains of the USA. However, there is no published genetic map for this species, which prevents the identification of quantitative trait loci (QTL). The objectives of the present study were (1) construction of a genetic linkage map and (2) identification of DNA markers linked to QTLs for morpho-agronomic traits. A total of 93 recombinant inbred lines derived from a single F1 (“Huntsman” × “Minsum”) were genotyped with GBS-SNP markers and phenotyped for nine morpho-agronomic traits in the field during 2013 and 2014 at Scottsbluff and Sidney, NE. IciMapping v.4.0.6.0 was used for constructing a genetic linkage map and mapping QTL. The RILs exhibited significant variation for a wide range of traits, and several traits showed evidence of genotype × environment interactions. A total of 833 GBS-SNP markers formed 18 major and 84 minor linkage groups, whereas 519 markers remained ungrouped. A total of 117 GBS-SNP markers were distributed on the 18 major linkage groups spanning a genome length of 2137 cM of proso millet with an average distance of 18 cM between markers. The length and number of markers in each of the 18 major linkage groups ranged from 54.6 to 236 cM and 4 to 12, respectively. A total of 18 QTLs for eight morpho-agronomic traits were detected on 14 linkage groups, each of which explained 13.2–34.7 % phenotypic variance. DNA markers flanking the QTLs were identified, which will aid in marker-assisted selection of these traits. To our knowledge, this is the first genetic linkage map and QTL mapping in proso millet, which will support further genetic analysis and genomics-assisted genetic improvement of this crop.  相似文献   

9.
Tea plant (Camellia sinensis) is a major beverage crop across the world. To uncover the genetic controls of agronomic traits and facilitate marker-assisted breeding (MAB) in tea plant, we constructed a saturated SSR-based linkage map using an F1 population derived from the crossing of ‘Longjin43’ × ‘Baihaozao’. A total of 483 SSR markers, consisting of 117 novel loci, 129 transferred from other tea plant maps, and 237 previously mapped, were successfully integrated into a new consensus map. The map has 15 linkage groups, covering 1226.2 cM in total with an average marker distance of 2.5 cM. The 126 markers in common enabled us to align this map to the reference genetic maps of tea plant. Phenotype data were collected in 2014 and 2015 for five traits: timing of spring bud flush (TBF), young shoot color (YSC), mature leaf length (MLL), mature leaf width (MLW), and leaf shape index (LSI, i.e., MLL/MLW). QTL analyses were performed for the five traits using the new consensus map and 15 QTLs were identified. The SSR markers, linkage map, and QTLs reported here are useful resources for future QTL mining, identification of causal genes, and MAB in tea plant.  相似文献   

10.
St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a warm-season turfgrass commonly grown in the southern USA. In this study, the first linkage map for all nine haploid chromosomes of the species was constructed for cultivar ‘Raleigh’ and cultivar ‘Seville’ using a pseudo-F2 mapping strategy. A total of 160 simple sequence repeat markers were mapped to nine linkage groups (LGs) covering a total distance of 1176.24 cM. To demonstrate the usefulness of the map, quantitative trait loci (QTL) were mapped controlling field winter survival, laboratory-based freeze tolerance, and turf quality traits. Multiple genomic regions associated with these traits were identified. Moreover, overlapping QTL were found for winterkill and spring green up on LG 3 (99.21 cM); turf quality, turf density, and leaf texture on LG 3 (68.57–69.50 cM); and surviving green tissue and regrowth on LGs 1 (38.31 cM), 3 (77.70 cM), 6 (49.51 cM), and 9 (34.20 cM). Additional regions, where QTL identified in both field and laboratory-based/controlled environment freeze testing co-located, provided strong support that these regions are good candidates for true gene locations. These results present the first complete linkage map produced for St. Augustinegrass, providing a template for further genetic mapping. Additionally, markers linked to the QTL identified may be useful to breeders for transferring these traits into new breeding lines and cultivars.  相似文献   

11.

Key message

Fifteen stable QTLs were identified using a high-density soybean genetic map across multiple environments. One major QTL, qIF5-1, contributing to total isoflavone content explained phenotypic variance 49.38, 43.27, 46.59, 45.15 and 52.50%, respectively.

Abstract

Soybeans (Glycine max L.) are a major source of dietary isoflavones. To identify novel quantitative trait loci (QTL) underlying isoflavone content, and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population comprised of 196 F7:8–10 recombinant inbred lines (RILs, Huachun 2 × Wayao) was utilized to evaluate individual and total isoflavone content in plants grown in four different environments in Guangdong. A high-density genetic linkage map containing 3469 recombination bin markers based on 0.2 × restriction site-associated DNA tag sequencing (RAD-seq) technology was used to finely map QTLs for both individual and total isoflavone contents. Correlation analyses showed that total isoflavone content, and that of five individual isoflavone, was significantly correlated across the four environments. Based on the high-density genetic linkage map, a total of 15 stable quantitative trait loci (QTLs) associated with isoflavone content across multiple environments were mapped onto chromosomes 02, 05, 07, 09, 10, 11, 13, 16, 17, and 19. Further, one of them, qIF5-1, localized to chromosomes 05 (38,434,171–39,045,620 bp) contributed to almost all isoflavone components across all environments, and explained 6.37–59.95% of the phenotypic variance, especially explained 49.38, 43.27, 46.59, 45.15 and 52.50% for total isoflavone. The results obtained in the present study will pave the way for a better understanding of the genetics of isoflavone accumulation and reveals the scope available for improvement of isoflavone content through marker-assisted selection.
  相似文献   

12.
Identifying quantitative trait loci (QTL) for viral disease resistance is of particular importance in selective breeding programs of fish species. Genetic markers linked to QTL can be useful in marker-assisted selection (MAS) for elites resistant to specific pathogens. Here, we conducted a genome scan for QTL associated with Singapore grouper iridovirus (SGIV) resistance in an Asian seabass (Lates calcarifer) family, using a high-density linkage map generated with genotyping-by-sequencing. One genome-wide significant and three suggestive QTL were detected at LG21, LG6, LG13, and LG15, respectively. The phenotypic variation explained (PVE) by the four QTL ranged from 7.5 to 15.6%. The position of the most significant QTL at LG21 was located between 31.88 and 36.81 cM. The SNP marker (SNP130416) nearest to the peak of this QTL was significantly associated with SGIV resistance in an unrelated multifamily population. One candidate gene, MECOM, close to the peak of this QTL region, was predicted. Evidence of alternative splicing was observed for MECOM and one specific category of splicing variants was differentially expressed at 5 days post-SGIV infection. The QTL detected in this study are valuable resources and can be used in the selective breeding programs of Asian seabass with regard to resistance to SGIV.  相似文献   

13.
Blush is an important trait for marketing peaches. The red skin pigmentation develops through the flavonoid and anthocyanin pathways, and both genetic and environmental stimuli, and their interaction, control the regulation of these pathways. The molecular basis of blush development in peach is yet to be understood. An F2 blush population (ZC2) derived from a cross between two peach cultivars with contrasting phenotypes for blush, “Zin Dai” (~30 % red) and “Crimson Lady” (~100 % red), was used for linkage map construction and quantitative trait loci (QTLs) mapping. The segregating population was phenotyped for blush for 4 years using a visual rating scale and quantified using a colorimeter (L*, a*, and b*) 1 year. The ZC2 population was genotyped with the IPSC 9 K peach single-nucleotide polymorphism (SNP) array v1, and a high-density ZC2 genetic linkage map was constructed. The map covers genetic a distance of ~452.51 cM with an average marker spacing of 2.38 cM/marker. Four QTLs were detected: one major QTL on LG3 (Blush.Pp.ZC-3.1) and three minor QTLs on LG 4 and 7 (Blush.Pp.ZC-4.1; Blush.Pp.ZC-4.2; Blush.Pp.ZC-7.1), indicating the presence of major and minor genes involved in blush development. Candidate genes involved in skin and flesh coloration of peach (PprMYB10), cherry (PavMYB10), and apple (MdMYB1/MdMYBA/MdMYB10) are located within the interval of the major QTL on LG3, suggesting the same genetic control for color development in the Rosaceae family. Marker-assisted selection (MAS) for blush is discussed.  相似文献   

14.
The improvement of fruit quality is an important objective in citrus breeding. Using an F1 segregating population from a cross between citrus cultivars ‘Harehime’ (‘E647’—‘Kiyomi’ [Citrus unshiu Marcow. ‘Miyagawa Wase’ × Citrus sinensis (L.) Osbeck ‘Trovita’] × ‘Osceola’—a cultivar of clementine [Citrus clementina hort. ex Tanaka] × ‘Orland’ [Citrus paradisi Macfad. ‘Duncan’ × Citrus tangerina hort. ex Tanaka] × ‘Miyagawa Wase’) and ‘Yoshida’ ponkan (Citrus reticulata Blanco ‘Yoshida’), a SNP-based genetic linkage map was constructed and quantitative trait locus (QTL) mapping of four fruit-quality traits (fruit weight, sugar content, peel puffing, and water rot) was performed. The constructed genetic linkage map of ‘Harehime’ consisted of 442 single nucleotide polymorphisms (SNPs) on 9 linkage groups (LGs) and covered 635.8 cM of the genome, while that of ‘Yoshida’ ponkan consisted of 332 SNPs on 9 LGs and covered 892.9 cM of its genome. We identified four QTLs associated with fruit weight, one QTL associated with sugar content, three QTLs associated with peel puffing, and one QTL associated with water rot. For these QTL regions, we estimated the haplotypes of the crossed parents and verified the founding cultivars that these QTLs were originated from and their inheritance in descendant cultivars using pedigree information. QTLs identified in this study provide useful information for marker-assisted breeding of citrus in Japan.  相似文献   

15.

Background

Flavonoids are important components that confer upon tea plants a unique flavour and health functions. However, the traditional breeding method for selecting a cultivar with a high or unique flavonoid content is time consuming and labour intensive. High-density genetic map construction associated with quantitative trait locus (QTL) mapping provides an effective way to facilitate trait improvement in plant breeding. In this study, an F1 population (LJ43×BHZ) was genotyped using 2b-restriction site-associated DNA (2b-RAD) sequencing to obtain massive single nucleotide polymorphism (SNP) markers to construct a high-density genetic map for a tea plant. Furthermore, QTLs related to flavonoids were identified using our new genetic map.

Results

A total of 13,446 polymorphic SNP markers were developed using 2b-RAD sequencing, and 4,463 of these markers were available for constructing the genetic linkage map. A 1,678.52-cM high-density map at an average interval of 0.40 cM with 4,217 markers, including 427 frameset simple sequence repeats (SSRs) and 3,800 novel SNPs, mapped into 15 linkage groups was successfully constructed. After QTL analysis, a total of 27 QTLs related to flavonoids or caffeine content (CAF) were mapped to 8 different linkage groups, LG01, LG03, LG06, LG08, LG10, LG11, LG12, and LG13, with an LOD from 3.14 to 39.54, constituting 7.5% to 42.8% of the phenotypic variation.

Conclusions

To our knowledge, the highest density genetic map ever reported was constructed since the largest mapping population of tea plants was adopted in present study. Moreover, novel QTLs related to flavonoids and CAF were identified based on the new high-density genetic map. In addition, two markers were located in candidate genes that may be involved in flavonoid metabolism. The present study provides valuable information for gene discovery, marker-assisted selection breeding and map-based cloning for functional genes that are related to flavonoid content in tea plants.
  相似文献   

16.
Auricularia auricula-judae is a traditional edible fungus that is cultivated widely in China. In this study, a genetic linkage map for A. auricula-judae was constructed using a mapping population consisting of 138 monokaryons derived from a hybrid strain (A119-5). The monokaryotic parent strains A14-5 and A18-119 were derived from two cultivated varieties, A14 (Qihei No. 1) and A18 (Qihei No. 2), respectively. In total, 130 simple sequence repeat markers were mapped. These markers were developed using the whole genome sequence of A. auricula-judae and amplified in A14-5, A18- 119, and the mapping population. The map consisted of 11 linkage groups (LGs) spanning 854 cM, with an average interval length of 6.57 cM. A testcross population was derived from crossing between the monokaryon A184-57 (from the wild strain A184 as a tester strain) and the mapping population. Important agronomic trait-related QTLs, including mycelium growth rate on potato dextrose agar for the mapping population, mycelium growth rate on potato dextrose agar and sawdust for the testcross population, growth period (days from inoculation to fruiting body harvesting), and yield for the testcross population, were identified using the composite interval mapping method. Six mycelium growth raterelated QTLs were identified on LG1 and LG4, two growth period-related QTLs were identified on LG2, and three yieldrelated QTLs were identified on LG2 and LG6. The results showed no linkage relationship between mycelium growth rate and growth period. The present study provides a foundation for locating genes for important agronomic characteristics in A. auricula-judae in the future.  相似文献   

17.
Mucuna pruriens is a well-recognized agricultural and horticultural crop with important medicinal use. However, antinutritional factors in seed and adverse morphological characters have negatively affected its cultivation. To elucidate the genetic control of agronomic traits, an intraspecific genetic linkage map of Indian M. pruriens has been developed based on amplified fragment length polymorphism (AFLP) markers using 200 F 2 progenies derived from a cross between wild and cultivated genotypes. The resulting linkage map comprised 129 AFLP markers dispersed over 13 linkage groups spanning a total distance of 618.88 cM with an average marker interval of 4.79 cM. For the first time, three QTLs explaining about 6.05–14.77% of the corresponding total phenotypic variation for three quantitative (seed) traits and, eight QTLs explaining about 25.96% of the corresponding total phenotypic variation for three qualitative traits have been detected on four linkage groups. The map presented here will pave a way for mapping of genes/QTLs for the important agronomic and horticultural traits contrasting between the parents used in this study.  相似文献   

18.
Blush skin and flowering time are agronomic traits of interest to the Agricultural Research Council (ARC) Infruitec-Nietvoorbij pear breeding programme. The genetic control of these traits was investigated in the pear progeny derived from ‘Flamingo’ (blush cultivar) × ‘Abate Fetel’ (slightly blush) made up of 121 seedlings. Blush skin was scored phenotypically over three seasons and flowering time was scored over two seasons. A total of 160 loci from 137 simple sequence repeat (SSR) markers were scored in the progeny and used to construct parental genetic linkage maps. Quantitative trait loci (QTL) analysis revealed two QTLs for blush skin, a major QTL on linkage group (LG) 5 in ‘Flamingo’, and a major QTL on LG9 in ‘Abate Fetel’. Two SSR markers, NB101a and SAmsCO865954, were closely linked with the major QTL on LG5 in ‘Flamingo’, with alleles 139 bp and 462 bp in coupling, respectively. These markers were present in approximately 90% of the seedlings scored as good blush (class 4) based on the average data set. These two markers were used to genotype other pear accessions to validate the QTL on LG5 with the view of marker-assisted selection. Two candidate genes, MYB86 and UDP-glucosyl transferase, were associated with the QTL on LG5 and MYB21 and MYB39 were associated with the QTL on LG9. QTL analysis for flowering time revealed a major QTL located on LG9 in both parents. Marker GD142 with allele 161 bp from ‘Flamingo’ was present in approximately 88% of the seedlings that flowered earlier than either parent, based on the average data set. The QTLs and linked markers will facilitate marker-assisted selection for the improvement of these complex traits.  相似文献   

19.
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. 相似文献   

20.
Populus deltoides is an important industrial tree species widely planted in many areas of the world, and de novo genome sequencing of this plant has been carried out by several research groups. A dense genetic map associating genome sequences is highly desirable for reconstructing the chromosome pseudomolecules using the obtained sequence scaffold assemblies. For this purpose, an intraspecific full-sib F1 mapping pedigree was established by using the sequenced P. deltoides as the maternal parent. With this mapping pedigree, we constructed a high-density genetic map using 92 randomly selected progenies. Single nucleotide polymorphism (SNP) markers were discovered by using specific length amplified fragment sequencing (SLAF-seq). In total, 487,038 SLAFs were generated, of which 179,360 were polymorphic. A high-density genetic map was built using HighMap software, which included 11,680 Mendelian segregation markers distributing in 2851 marker bins. The established map consisted of 19 linkage groups (LGs) that equaled to the 19 haploid chromosomes in poplar genome, and spanned a total genetic length of 3494.66 cM, with an average distance of 1.23 cM per marker bin. The map presented here will be useful for anchoring the genome sequence assemblies along chromosomes, and for many other aspects of genetic studies on P. deltoides and the closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号