首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Blush skin and flowering time are agronomic traits of interest to the Agricultural Research Council (ARC) Infruitec-Nietvoorbij pear breeding programme. The genetic control of these traits was investigated in the pear progeny derived from ‘Flamingo’ (blush cultivar) × ‘Abate Fetel’ (slightly blush) made up of 121 seedlings. Blush skin was scored phenotypically over three seasons and flowering time was scored over two seasons. A total of 160 loci from 137 simple sequence repeat (SSR) markers were scored in the progeny and used to construct parental genetic linkage maps. Quantitative trait loci (QTL) analysis revealed two QTLs for blush skin, a major QTL on linkage group (LG) 5 in ‘Flamingo’, and a major QTL on LG9 in ‘Abate Fetel’. Two SSR markers, NB101a and SAmsCO865954, were closely linked with the major QTL on LG5 in ‘Flamingo’, with alleles 139 bp and 462 bp in coupling, respectively. These markers were present in approximately 90% of the seedlings scored as good blush (class 4) based on the average data set. These two markers were used to genotype other pear accessions to validate the QTL on LG5 with the view of marker-assisted selection. Two candidate genes, MYB86 and UDP-glucosyl transferase, were associated with the QTL on LG5 and MYB21 and MYB39 were associated with the QTL on LG9. QTL analysis for flowering time revealed a major QTL located on LG9 in both parents. Marker GD142 with allele 161 bp from ‘Flamingo’ was present in approximately 88% of the seedlings that flowered earlier than either parent, based on the average data set. The QTLs and linked markers will facilitate marker-assisted selection for the improvement of these complex traits.  相似文献   

2.
Bacterial spot, caused by Xanthomonas arboricola pv. pruni (Xap), is a serious disease that can affect peach fruit quality and production worldwide. This disease causes severe defoliation and blemishing of fruit, particularly in areas with high rainfall, strong winds, high humidity, and sandy soil. The molecular basis of its tolerance and susceptibility in peach is yet to be understood. An F2 population of 63 genotypes derived from a cross between peaches “O’Henry” (susceptible) and “Clayton” (resistant) has been used for linkage map construction and quantitative trait loci (QTL) mapping. Phenotypic data for leaf and fruit response to Xap infection were collected over 2 years at two locations. A high-density genetic linkage map that covers a genetic distance of 421.4 cM with an average spacing between markers of 1.6 cM was developed using the International Peach Single Nucleotide Polymorphism Consortium (IPSC) 9K array v1. Fourteen QTLs with an additive effect on Xap resistance were detected, including four major QTLs on linkage groups (LG) 1, 4, 5, and 6. Major QTLs, Xap.Pp.OC-4.1 and Xap.Pp.OC-4.2, on LG4 were associated with Xap resistance in leaf; Xap.Pp.OC-5.1 on LG5 was associated with Xap resistance in both leaf and fruit, while Xap.Pp.OC-1.2 and Xap.Pp.OC-6.1 on LG1 and LG6, respectively, were associated with Xap resistance in fruit. This suggested separate regulation of leaf and fruit resistance for Xap in peach as well as participation of genes involved in general plant response to biotic stress. The potential for marker-assisted selection for Xap resistance in peach is discussed.  相似文献   

3.
Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross “Contender” (C, resistant)?×?“Elegant Lady” (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C?×?EL population and to construct a linkage map. C?×?EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C?×?EL-2, R 2?=?13.1–31.5 %) and EPPISF032 (LG C?×?EL-4, R 2?=?11–14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R 2?=?3.0–11.0 %). These results suggest that in the C?×?EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit.  相似文献   

4.
The razor clam (Sinonovacula constricta) is an important aquaculture species, for which a high-density genetic linkage map would play an important role in marker-assisted selection (MAS). In this study, we constructed a high-density genetic map and detected quantitative trait loci (QTLs) for Sinonovacula constricta with an F1 cross population by using the specific locus amplified fragment sequencing (SLAF-seq) method. A total of 315,553 SLAF markers out of 467.71 Mreads were developed. The final linkage map was composed of 7516 SLAFs (156.60-fold in the parents and 20.80-fold in each F1 population on average). The total distance of the linkage map was 2383.85 cM, covering 19 linkage groups with an average inter-marker distance of 0.32 cM. The proportion of gaps less than 5.0 cM was on average 96.90%. A total of 16 suggestive QTLs for five growth-related traits (five QTLs for shell height, six QTLs for shell length, three QTLs for shell width, one QTL for total body weight, and one QTL for soft body weight) were identified. These QTLs were distributed on five linkage groups, and the regions showed overlapping on LG9 and LG13. In conclusion, the high-density genetic map and QTLs for S. constricta provide a valuable genetic resource and a basis for MAS.  相似文献   

5.
Pistachio is one of the most commercially important nut trees in the world. To characterize the genetic controls of horticultural traits and facilitate marker-assisted breeding in pistachio, we constructed an SSR-based linkage map using an interspecific F1 population derived from a cross between the cultivar “Siirt” (Pistacia vera L.) and the monoecious Pa-18 genotype of Pistacia atlantica Desf. This population was also used for the first QTL analysis in pistachio on leaf and shoot characters. In total, 1312 SSR primers were screened, and 388 loci were successfully integrated into parental linkage maps. The Siirt maternal map contained 306 markers, while the “Pa-18” paternal map included 285 markers along the 15 linkage groups. The Siirt map spanned 1410.4 cM, with an average marker distance of 4.6 cM; the Pa-18 map covered 1362.5 cM with an average marker distance of 4.8 cM. Phenotypic data were collected during the growing seasons of 2015 and 2016 for four traits: leaf length (LL), leaf width (LW), leaf length/leaf width ratio (LWR), number of leaflet pairs (NLL), and young shoot color (YSC). A total of 17 QTLs were identified in the parental maps. Four QTLs for LL and LW were located on LG2 and LG4, while four QTLs for LWR ratio on LG13 and LG14, two QTLs for NLL and two QTLs for YSC were on LG7 and LG9, respectively, with similar positions in both parental maps. The SSR markers, linkage maps, and QTLs reported here will provide a valuable resource for future molecular and genetic studies in pistachio.  相似文献   

6.
Verticillium wilt (VW) can cause substantial yield loss in hop particularly with the outbreaks of the lethal strain of Verticillium albo-atrum. To elucidate genetic control of VW resistance in hop, an F1 mapping population derived from a cross of cultivar Wye Target, with the predicted genetic basis of resistance, and susceptible male breeding line BL2/1 was developed to assess wilting symptoms and to perform QTL mapping. The genetic linkage map, constructed with 203 markers of various types using a pseudo-testcross strategy, formed ten major linkage groups (LG) of the maternal and paternal maps, covering 552.98 and 441.1 cM, respectively. A significant QTL for VW resistance was detected at LOD 7 on a single chromosomal region on LG03 of both parental maps, accounting for 24.2–26.0 % of the phenotypic variance. QTL analysis for alpha-acid content and yield parameters was also performed on this map. QTLs for these traits were also detected and confirmed our previously detected QTLs in a different pedigree and environment. The work provides the basis for exploration of QTL flanking markers for possible use in marker-assisted selection.  相似文献   

7.
Body weight and length are economical important traits in aquaculture species influenced by quantitative trait loci (QTL) and environmental factors. In this study, a backcross (BC1) common carp family, with 86 progeny, was utilized to construct genetic map for preliminary QTL mapping. The genetic map was constructed with 366 markers, including 191 SNP from gene, coverage 50 linkage groups with an average marker distance of 18.5 cM. A total of fourteen QTLs associated with body weight (BW), body length (BL) and condition factor (K) were detected on ten linkage groups (LGs). Among these QTLs detected, three (qBW8, qBL8 and qK8) were associated with BW, BL and K respectively, were mapped on LG8. qBW8 and qK8 were identified on similar interval neared locus HLJ2394 explained 14.9 and 20.9 % of the phenotype variance, while qBL8 was identified on separate nearby locus HLJ571 with 30.8 % of phenotype variance. Two QTLs, qBW13 and qK13, related with BW and K separately, were found on LG13 at different locus with phenotype variance of 25.3 and 20.9 %. Other two QTLs, qBW19 and qBL19, associated to BW and BL were mapped on same region near SNP0626 on LG19, and explained 10.3 and 15.6 % of phenotype variance. While other seven QTLs related with BW and BL were located on different LGs. Confidential interval was ranged from 1.1 to 10 cM in the present study. These markers, with lower QTL interval, have great influence on the body weight and length. Therefore, these QTLs will be helpful to find out the genes related with specific trait.  相似文献   

8.
Sweet cherry (Prunus avium L.) skin and fruit colors vary widely due to differences in red and yellow pigment profiles. The two major market classes of sweet cherry represent the two color extremes, i.e., yellow skin with red blush and yellow flesh and dark mahogany skin with mahogany flesh. Yet, within these extremes, there is a continuum of skin and flesh color types. The genetic control of skin and flesh color in sweet cherry was investigated using a quantitative trait locus (QTL) approach with progeny derived from a cross between cherry parents representing the two color extremes. Skin and flesh colors were measured using a qualitative color-card rating over three consecutive years and also evaluated quantitatively for darkness/lightness (L*), red/green (a*), and yellow/blue (b*). Segregations for the color measurements (card, L*, a*, and b*) did not fit normal distributions; instead, the distributions were skewed towards the color of the dark-fruited parent. A major QTL for skin and flesh color was identified on linkage group (LG) 3. Two QTLs for skin and flesh color were also identified on LG 6 and LG 8, respectively, indicating segregation for minor genes. The significance and magnitude of the QTL identified on LG 3 suggests the presence of a major regulatory gene within this QTL interval. A candidate gene PavMYB10, homologous to apple MdMYB10 and Arabidopsis AtPAP1, is within the interval of the major QTL on LG 3, suggesting that PavMYB10 could be the major determinant of fruit skin and flesh coloration in sweet cherry.  相似文献   

9.
Body height (BH), head length (HL), snout length (SL), and tail length (TL) are important traits related with swimming ability of fish. Therefore, improving these traits will increase the production which is the basic goal of aquaculture breeding. To understand the genetic basis of swimming ability related traits in Cyprinus carpio L., a high-density linkage map spanning 3,301 cM in 50 linkage groups was utilized for quantitative trait locus (QTL) mapping. Mapping family comprised 190 offspring and 627 molecular markers were genotyped with average distance of 5.6 cM. A total of 15 QTLs including four (qBH13, qBH30, qBH33, qBH48) for BH, four (qHL10, qHL18, qHL29, qHL48) for HL, three (qSL24, qSL27, qSL45) for SL, and four (qTL15, qTL17, qTL18, qTL44) for TL were detected on 13 linkage groups LG10, LG13, LG15, LG17, LG18, LG24, LG27, LG29, LG30, LG33, LG44, LG45, and LG48. Each LG consisted on single QTL except LG18 and LG48. LG18 was found with two QTLs associated with HL and TL. While LG48 was comprised, the QTLs related with BH and HL. The phenotype variance was recorded from 12.6 to 40.6 %. Five QTLs, qHL48, qSL45, qTL15, qTL18, and qTL44, explained phenotype variance of >20 % with a significant levels of 0.047, 0.049, 0.037, 0.025, and 0.023, respectively. The neighbored loci of these QTLs were considered as main region of chromosomes controlling the traits. These identified genetic regions will be the main source of discovering gene(s) associated with swimming ability related traits in C. carpio L.  相似文献   

10.
Single nucleotide polymorphisms (SNPs) were used to construct an integrated SNP linkage map of peach (Prunus persica (L.) Batsch). A set of 1,536 SNPs were evaluated with the GoldenGate® Genotyping assay in two mapping populations, Pop-DF, and Pop-DG. After genotyping and filtering, a final set of 1,400 high quality SNPs in Pop-DF and 962 in Pop-DG with full map coverage were selected and used to construct two linkage maps with JoinMap®4.0. The Pop-DF map covered 422 cM of the peach genome and included 1,037 SNP markers, and Pop-DG map covered 369 cM and included 738 SNPs. A consensus map was constructed with 588 SNP markers placed in eight linkage groups (n?=?8 for peach), with map coverage of 454 cM and an average distance of 0.81 cM/marker site. Placements of SNPs on the “peach v1.0” physical map were compared to placement on the linkage maps and several differences were observed. Using the SNP linkage map of Pop-DG and phenotypic data collected for three harvest seasons, a QTL analysis for fruit quality traits and chilling injury symptoms was carried out with the mapped SNPs. Significant QTL effects were detected for mealiness (M) and flesh bleeding (FBL) QTLs on linkage group 4 and flesh browning (FBr) on linkage group 5. This study represents one of the first examples of QTL detection for quality traits and chilling injury symptoms using a high-density SNP map in a single peach F1 family.  相似文献   

11.
12.
Tobacco (Nicotiana tabacum L., 2n = 48) is an important agronomic crop and model plant. Flue-cured tobacco is the most important type and accounts for approximately 80 % of tobacco production worldwide. The low genetic diversity of flue-cured tobacco impedes the construction of a high-density genetic linkage map using simple sequence repeat (SSR) markers and warrants the exploitation of single nucleotide polymorphic (SNP) markers from genomic regions. In this article, initially using specific locus-amplified fragment sequencing, we discovered 10,891 SNPs that were subsequently used as molecular markers for genetic map construction. Combined with SSR markers, a final high-density genetic map was generated containing 4215 SNPs and 194 SSRs distributed on 24 linkage groups (LGs). The genetic map was 2662.43 cM in length, with an average distance of 0.60 cM between adjacent markers. Furthermore, by mapping the SNP markers to the ancestral genomes of Nicotiana tomentosiformis and Nicotiana sylvestris, a large number of genome rearrangements were identified as occurring after the polyploidization event. Finally, using this novel integrated map and mapping population, two major quantitative trait loci (QTLs) were identified for flue-curing and mapped to the LG6 of tobacco. This is the first report of SNP markers and a SNP-based linkage map being developed in tobacco. The high-density genetic map and QTLs related to tobacco curing will support gene/QTL fine mapping, genome sequence assembly and molecular breeding in tobacco.  相似文献   

13.
In this study, a population of 97 F1 seedlings from a cross between the interspecific hybrid (European × Chinese species) pear ‘Bayuehong’ (BYH) and the Chinese pear ‘Dangshansuli’ (DS) was used for establishing linkage maps and for quantitative trait loci (QTL) discovery. Using amplified length polymorphism (AFLP), simple sequence repeat (SSR), and sequence-related amplified polymorphism (SRAP) markers, along with the S locus for self-incompatibility, two parental linkage maps were constructed. The map of BYH consisted of 214 markers (143 AFLPs, 64 SRAPs, 6 SSRs, and S) mapped on all 17 linkage groups of the pear genome with a total length of 1,352.7 cM. The map of DS was comprised of 122 markers (83 AFLPs, 37 SRAPs, 1 SSR, and S) distributed along all 17 linkage groups and covering 1,044.3 cM. Based on phenotypic data from two successive years (2007 and 2008) for six fruit traits, including fruit weight (in grams), fruit diameter (in centimeters), fruit length (in centimeters), soluble solids content, fruit shape index, and maturity date, 19 QTLs were detected. These QTLs were mapped on LG 01, LG 02, LG 05, LG 07, LG 08, LG 10 of the BYH map and LG 02, LG 06, LG 15 of the DS map and accounting for 7.1 to 22.0 % of the observed phenotypic variance. Four QTLs, Pfi-8-1 for fruit shape index, Pfm-8-1 for fruit maturity date, Pfw-7-1 and Pfw-8-1 for fruit weight (in grams), with LOD scores ≥3.5, were deemed as major genes. QTLs Pfi-8-1, Pfm-8-1, and Pfw-8-1 were co-localized on LG 08 of the BYH map, along with Pfl-8-1 for fruit length. It was observed that on LG 07 of the BYH map, QTLs for fruit length, fruit shape index, and fruit weight were clustered. When QTL locations from both years were compared, Pfl-7-1 and Pfl-7-2 for fruit length, Pfi-2-1 and Pfi-2-2 for fruit shape index, and Pfm-8-1 and Pfm-8-2 for fruit maturity date were stably mapped onto the same linkage groups, respectively. Moreover, Pfm-8-1 and Pfm-8-2 were also located within the same region of LG 08 of the BYH map.  相似文献   

14.
Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely “ghost” QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.  相似文献   

15.
Cabbage heading traits are important quantitative traits that greatly affect both quality and yield of cabbage. However, the genetic control of these traits remains unclear. To detect quantitative trait loci (QTLs) associated with heading traits, a double haploid (DH) population with 196 lines was created from a cabbage hybrid 01–20 × 96–100. A genetic map with insertion–deletion and simple sequence repeat markers was constructed based on the DH population, with a total length of 934.06 cM and average interval length of 2.3 cM between adjacent markers. Field experiments in three seasons were carried out to evaluate the heading traits, including head mature period (Hm), head weight (Hw), core length (Cl), head vertical diameter (Hvd), and the ratio of Cl to Hvd (Cl/Hvd). Using the map and the trait data, 13 reliable QTLs in total were identified and 5 were found in more than one season based on the adjusted means of three seasons. Major QTLs were identified for Hm (R 2 = 40.4, LOD = 14.84), Hw (R 2 = 28.6, LOD = 9.83), Cl (R 2 = 38.8, LOD = 15.73), Hvd (R 2 = 19.2, LOD = 9.26), and Cl/Hvd (R 2 = 38.8, LOD = 12.75). The most significant QTLs were Hm3.1, Cl3.1, and Cl/Hvd3.1, which were detected in three seasons with the maximum contribution rate of almost 40 %. Six active regions that harbored more than one QTL were identified on five chromosomes, and one of them contained major QTLs associated with five traits. The QTLs obtained in this study should be useful for marker-assisted selection in cabbage breeding and for understanding the genetic control of these traits.  相似文献   

16.
We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2 × = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as co-localized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest co-localized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those for fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.  相似文献   

17.
The genetic architecture determinants of yield traits in peanut (Arachis hypogaea L.) are poorly understood. In the present study, an effort was made to map quantitative trait loci (QTLs) for yield traits using recombinant inbred lines (RIL). A genetic linkage map was constructed containing 609 loci, covering a total of 1557.48 cM with an average distance of 2.56 cM between adjacent markers. The present map exhibited good collinearity with the physical map of diploid species of Arachis. Ninety-two repeatable QTLs were identified for 11 traits including height of main stem, total branching number, and nine pod- and seed-related traits. Of the 92 QTLs, 15 QTLs were expressed across three environments and 65 QTLs were newly identified. Twelve QTLs for the height of main stem and the pod- and seed-related traits explaining more than 10 % of phenotypic variation showed a great potential for marker-assisted selection in improving these traits. 相似文献   

18.
A recent genetic linkage map was employed to detect quantitative trait loci (QTLs) associated with Vibrio anguillarum resistance in Japanese flounder. An F1 family established and challenged with V. anguillarum in 2009 was used for QTL mapping. Of the 221 simple sequence repeat (SSR) markers used to detect polymorphisms in the parents of F1, 170 were confirmed to be polymorphic. The average distance between the markers was 10.6 cM. Equal amounts of genomic DNA from 15 fry that died early and from 15 survivors were pooled separately to constitute susceptible bulk and resistance bulk DNA. Bulked segregant analysis and QTL mapping were combined to detect candidate SSR markers and regions associated with the disease. A genome scan identified four polymorphic SSR markers, two of which were significantly different between susceptible and resistance bulk (P?=?0.008). These two markers were located in linkage group (LG) 7; therefore, all the SSR markers in LG7 were genotyped in all the challenged fry by single marker analysis. Using two different models, 11–17 SSR markers were detected with different levels of significance. To confirm the associations of these markers with the disease, composite interval mapping was employed to genotype all the challenged individuals. One and three QTLs, which explained more than 60 % of the phenotypic variance, were detected by the two models. Two of the QTLs were located at 48.6 cM. The common QTL may therefore be a major candidate region for disease resistance against V. anguillarum infection.  相似文献   

19.
The availability of genomic resources such as expressed sequence tag-derived simple sequence repeat (EST-SSR) markers in adaptive genes with high transferability across related species allows the construction of genetic maps and the comparison of genome structure and quantitative trait loci (QTL) positions. In the present study, genetic linkage maps were constructed for both parents of a Quercus robur × Q. robur ssp. slavonica full-sib pedigree. A total of 182 markers (61 AFLPs, 23 nuclear SSRs, 98 EST-SSRs) and 172 markers (49 AFLPs, 21 nSSRs, 101 EST-SSRs, 1 isozyme) were mapped on the female and male linkage maps, respectively. The total map length and average marker spacing were 1,038 and 5.7 cM for the female map and 998.5 and 5.8 cM for the male map. A total of 68 nuclear SSRs and EST-SSRs segregating in both parents allowed to define homologous linkage groups (LG) between both parental maps. QTL for leaf morphological traits were mapped on all 12 LG at a chromosome-wide level and on 6 LG at a genome-wide level. The phenotypic effects explained by each single QTL ranged from 4.0 % for leaf area to 15.8 % for the number of intercalary veins. QTL clusters for leaf characters that discriminate between Q. robur and Quercus petraea were mapped reproducibly on three LG, and some putative candidate genes among potentially many others were identified on LG3 and LG5. Genetic linkage maps based on EST-SSRs can be valuable tools for the identification of genes involved in adaptive trait variation and for comparative mapping.  相似文献   

20.
An AFLP linkage map of Brassica juncea (L.) Czern and Coss was constructed using 88 recombinant inbred lines (RILs) from a cross between an Indian cultivar ‘Varuna’ and an accession from Poland ‘BEC-144’. The map included 91 AFLP markers organized on 19 linkage groups covering a total map distance of 1679.1 cM. A total of 14 QTLs were detected for oil content (2 QTLs), erucic acid (2 QTLs), eicosenoic acid (2 QTLs), linolenic acid (3 QTLs), linoleic acid (3 QTLs) and palmitic acid (2 QTLs). A specific genomic region on LG2 was associated with contents of three fatty acids: erucic acid, eicosenoic acid and linoleic acid. Some of the markers showed absolute linkage with the QTLs associated with the levels of linolenic acid, linoleic acid and oil content. These markers may be used for improvement of fatty acid profile of B. juncea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号