首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dicer plays an important role in the course of RNA interference (RNAi), i.e., it digests long double-stranded RNAs into 21-25 nucleotide small-interfering RNA (siRNA) duplexes functioning as sequence-specific RNAi mediators. In this study, we investigated the expression levels of Dicer and eIF2C1 approximately 4, which, like Dicer, appear to participate in mammalian RNAi, in various mouse tissues. Results indicate that the levels of eIF2C1 approximately 4 as well as Dicer are lower in skeletal muscle and heart than in other tissues. To see if RNAi could occur under such a condition with low levels of expression of Dicer and eIF2C1 approximately 4, we examined RNAi activity in mouse skeletal muscle fibers. The results indicate that RNAi can be induced by synthetic siRNA duplexes in muscle fibers. We further examined RNAi activity during myogenic differentiation of mouse C2C12 cells. The data indicate that although the expression levels of Dicer and eIF2C1 approximately 4 decrease during the differentiation, RNAi can be induced in the cells. Altogether, the data presented here suggest that muscle cells retain the ability to induce RNAi, although Dicer and eIF2C1 approximately 4 appear to be barely expressed in them.  相似文献   

3.
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.  相似文献   

4.
5.
6.
How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH–Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin–myosin network to regulate neuronal process outgrowth.  相似文献   

7.
RNA interference is a natural gene expression silencing system that appears throughout the tree of life. As the list of cellular processes linked to RNAi grows, so does the demand for tools to accurately measure RNAi dynamics in living cells. We engineered a synthetic RNAi sensor that converts this negative regulatory signal into a positive output in living mammalian cells thereby allowing increased sensitivity and activation. Furthermore, the circuit's modular design allows potentially any microRNA of interest to be detected. We demonstrated that the circuit responds to an artificial microRNA and becomes activated when the RNAi target is replaced by a natural microRNA target (miR-34) in U2OS osteosarcoma cells. Our studies extend the application of rationally designed synthetic switches to RNAi, providing a sensitive way to visualize the dynamics of RNAi activity rather than just the presence of miRNA molecules.  相似文献   

8.
9.
10.
The question of whether RNA interference (RNAi) acts as an antiviral mechanism in mammalian cells remains controversial. The antiviral interferon (IFN) response cannot easily be distinguished from a possible antiviral RNAi pathway owing to the involvement of double‐stranded RNA (dsRNA) as a common inducer molecule. The non‐structural protein 3 (NS3) protein of rice hoja blanca virus (RHBV) is an RNA silencing suppressor (RSS) that exclusively binds to small dsRNA molecules. Here, we show that this plant viral RSS lacks IFN antagonistic activity, yet it is able to substitute the RSS function of the Tat protein of human immunodeficiency virus type 1. An NS3 mutant that is deficient in RNA binding and its associated RSS activity is inactive in this complementation assay. This cross‐kingdom suppression of RNAi in mammalian cells by a plant viral RSS indicates the significance of the antiviral RNAi response in mammalian cells and the usefulness of well‐defined RSS proteins.  相似文献   

11.
12.
RNA interference (RNAi) is a conserved eukaryotic mechanism by which double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNAs. Recent concerns have arisen in mammalian systems about off-target effects of RNAi, as well as an interferon response. Most mammalian cells respond to long dsRNAs by inducing an antiviral response mediated by interferon that leads to general inhibition of protein synthesis and nonspecific degradation of mRNAs. Moreover, recent reports demonstrate that under certain conditions, short interfering RNAs (siRNAs, 21-25 bp) may activate the interferon system. Mouse oocytes and preimplantation embryos apparently lack this response, as potent and specific inhibition of gene expression triggered by long dsRNA is observed in these cells. In the present study, we analyzed the global pattern of gene expression by microarray analysis in transgenic mouse oocytes expressing long dsRNA and find no evidence of off-targeting. We also report that genes involved in the interferon response pathway are not expressed in mouse oocytes, even after exposure for an extended period of time to long dsRNA.  相似文献   

13.
14.
The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response.  相似文献   

15.
RNA interference (RNAi), a sequence-specific mRNA degradation induced by double-stranded RNA (dsRNA), is a common approach employed to specifically silence genes. Experimental RNAi in plant and invertebrate models is frequently induced by long dsRNA. However, in mammals, short RNA molecules are used preferentially since long dsRNA can provoke sequence-independent type I interferon response. A notable exception are mammalian oocytes where the interferon response is suppressed and long dsRNA is a potent and specific trigger of RNAi. Transgenic RNAi is an adaptation of RNAi allowing for inducing sequence-specific silencing upon expression of dsRNA. A decade ago, we have developed a vector for oocyte-specific expression of dsRNA, which has been used to study gene function in mouse oocytes on numerous occasions. This review provides an overview and discusses benefits and drawbacks encountered by us and our colleagues while working with the oocytes-specific transgenic RNAi system.  相似文献   

16.
ADAM23 (a disintegrin and metalloprotease 23), a member of brain MDC (macrophage‐derived chemokine) family, is important for the development of CNS (central nervous system). P19 mouse embryonal carcinoma cells can differentiate into neurons when cultured in aggregates and induced with RA (retinoic acid). We have found that under conditions without RA induction, knocking down ADAM23 with RNAi (RNA interference) promoted neuronal differentiation, and similarly recombinant GST (glutathione transferase)‐ADAM23‐DIS protein inhibited neuronal differentiation of P19/ADAM23KD (P19/ADAM23‐knockdown) cells. In P19/ADAM23KD, there were more cells arrested in G1 phase than normal P19 cells, due to the up‐regulation of P57KIP2 and P27KIP1 expression. P27KIP1 was up‐regulated during the differentiation process of both P19/ADAM23KD cells without RA induction, and P19 cells with RA induction. Transient overexpression of P27KIP1 in P19 cells also promoted neuronal differentiation of P19 cells. The findings indicate that ADAM23 suppresses neuronal differentiation through its disintegrin domain, and Adam23 KD up‐regulates P27KIP1 in P19/ADAM23KD cells, one reason that P19/ADAM23KD cells can differentiate into neurons without RA induction.  相似文献   

17.
18.
Design of extended short hairpin RNAs for HIV-1 inhibition   总被引:6,自引:1,他引:5  
RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.  相似文献   

19.
Methods that allow the specific silencing of a desired gene are invaluable tools for research. One of these is based on RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) specifically suppresses the expression of a target mRNA. Recently, it has been reported that RNAi also works in mammalian cells if small interfering RNAs (siRNAs) are used to avoid activation of the interferon system by long dsRNA. Thus, RNAi could become a major tool for reverse genetics in mammalian systems. However, the high cost and the limited availability of the short synthetic RNAs and the lack of certainty that a designed siRNA will work present major drawbacks of the siRNA technology. Here we present an alternative method to obtain cheap and large amounts of siRNAs using T7 RNA polymerase. With multiple transfection procedures, including calcium phosphate co-precipitation, we demonstrate silencing of both exogenous and endogenous genes.  相似文献   

20.
RNA interference (RNAi) elicited by long double‐stranded (ds) or base‐paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence‐specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN‐responsive cells with type I IFN. Notably, transfection with long dsRNA specifically vaccinates IFN‐deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号