首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
清香型白酒固态酿造过程中酵母种群结构和多样性分析   总被引:1,自引:0,他引:1  
王薇  吴群  徐岩 《微生物学通报》2012,39(9):1272-1279
【目的】探索清香型白酒固态酿造过程中酵母的种群结构和生态多样性变化规律,为科学认识白酒酿造的过程与机制提供理论依据。【方法】运用WL鉴别培养基和26S rRNA D1/D2序列分析方法对清香型白酒3种典型大曲和酒醅发酵过程的酵母进行分类学研究。【结果】从清香型白酒固态酿造过程中共鉴定出10种酵母,分别为Saccharomyces cerevisiae、Issatchenkia orientalis、Pichia anomala、Saccharomycopsis fibuligera、Pichia fermentans、Trichosporon asahii、Hanseniaspora osmophila、Pichia farinosa、Pichia membranifaciens和Clavispora lusitaniae。其中T.asahii、C.lusitaniae、H.osmophila、P.membranifaciens、P.farinose和P.fermentans为首次从清香型白酒酿造过程中分离获得的酵母种类。考察3种典型大曲(清茬、红心、后火曲)和大茬、二茬酒醅发酵过程的酵母种群结构变化规律显示,3种大曲具有相同的优势菌种S.fibuligera,但三者酵母结构组成差异较大,且清茬曲含有最多的酵母数量和种类。酒醅发酵过程中的酵母种群结构与3种大曲均明显不同,大茬和二茬酒醅酵母结构也不同,两种酒醅发酵后期的优势酵母均为S.cerevisiae,而发酵前期优势酵母则分别是H.osmophila和P.membranifaciens。【结论】深入研究了清香型白酒酿造过程中微生物的分布特征和规律,对认识清香型白酒酿造过程和群体微生物的发酵机制,以及丰富我国传统酿造食品微生物的研究,具有重要的理论和实践价值。  相似文献   

2.
The fermentation of the Theobroma cacao beans, involving yeasts, lactic acid bacteria, and acetic acid bacteria, has a major influence on the quality of the resulting cocoa. An assessment of the microbial community of cocoa bean heap fermentations in Ghana resulted in 91 yeast isolates. These were grouped by PCR-fingerprinting with the primer M13. Representative isolates were identified using the D1/D2 region of the large subunit rRNA gene, internal transcribed spacer sequences and partial actin gene sequences leading to the detection of 15 species. Properties of importance for cocoa bean fermentation, namely sucrose, glucose, and citrate assimilation capacity, pH-, ethanol-, and heat-tolerance, were examined for selected isolates. Pichia kudriavzevii ( Issatchenkia orientalis ), Saccharomyces cerevisiae , and Hanseniaspora opuntiae formed the major components of the yeast community. Hanseniaspora opuntiae was identified conclusively for the first time from cocoa fermentations. Among the less frequently encountered species, Candida carpophila, Candida orthopsilosis, Kodamaea ohmeri, Meyerozyma ( Pichia ) caribbica, Pichia manshurica, Saccharomycodes ludwigii , and Yamadazyma ( Pichia ) mexicana were not yet documented from this substrate. Hanseniaspora opuntiae was preferably growing during the earlier phase of fermentation, reflecting its tolerance to low pH and its citrate-negative phenotype, while no specific temporal distribution was recognized for P. kudriavzevii and S. cerevisiae .  相似文献   

3.
Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans.  相似文献   

4.
The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing.  相似文献   

5.
Cocoa sweatings, the pale yellowish liquid that drains off during cocoa fermentation, is the breakdown product of the mucilage surrounding the fresh cocoa bean, and constitutes about 10% of the weight of the cocoa fruit. On average, about 1.9 million l of sweatings are produced annually in Ghana during the cocoa harvesting season. It has been shown to be a suitable medium for the production of wines, alcohol, marmalade, jam and syrup. Its rapid collection in high yields and quality is the first step to its utilization on a commercial scale. Thus pure yeast culture fermentation of cocoa under controlled temperature conditions and its effect on yield of sweatings and final cocoa bean quality was investigated. Cocoa fermentations employing Saccharomyces chevalieri or Kluyveromyces fragilis alone gave significantly higher yields of sweatings (p 0.05) than controls. The initial rates of sweating by the two strains were also very high but dropped to a constant minimum value after 12h of fermentation. In contrast, fermentations employing Torulopsis candida or Candida norvengensis alone as well as different combinations of all the yeast strains did not give any significant difference in yield compared to controls (p 0.05). Fermentations using S. chevalieri alone or other combinations in which S. chevalieri was present gave beans with acceptable quality based on different quality indices used for grading cocoa beans commercially.  相似文献   

6.
Cocoa bean fermentation is still a spontaneous curing process to facilitate drying of nongerminating cocoa beans by pulp removal as well as to stimulate colour and flavour development of fermented dry cocoa beans. As it is carried out on farm, cocoa bean fermentation is subjected to various agricultural and operational practices and hence fermented dry cocoa beans of variable quality are obtained. Spontaneous cocoa bean fermentations carried out with care for approximate four days are characterized by a succession of particular microbial activities of three groups of micro‐organisms, namely yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB), which results in well‐fermented fully brown cocoa beans. This has been shown through a plethora of studies, often using a multiphasic experimental approach. Selected strains of several of the prevailing microbial species have been tested in appropriate cocoa pulp simulation media to unravel their functional roles and interactions as well as in small plastic vessels containing fresh cocoa pulp‐bean mass to evaluate their capacity to dominate the cocoa bean fermentation process. Various starter cultures have been proposed for successful fermentation, encompassing both cocoa‐derived and cocoa nonspecific strains of (hybrid) yeasts, LAB and AAB, some of which have been implemented on farms successfully.  相似文献   

7.
The Tapirapé people of the Tapi'it?wa tribe of Brazil produce several fermented foods and beverages, one of which is called 'cauim'. This beverage usually makes up the main staple food for adults and children. Several substrates are used in its production, including cassava, rice, corn, maize and peanuts. A fermentation using rice and cassava was conducted, and samples were collected at 4-h intervals for microbial analysis. The yeast population was low at the beginning of the fermentation and reached 6.9 x 10(7) CFU mL(-1) after 48 h. During the fermentation process common yeast species were identified by sequencing of the D1/D2 domain of the large-subunit (26S) rRNA gene. The predominant yeast species found was Candida tropicalis. Candida intermedia, Candida parapsilosis, Pichia guilliermondii, Saccharomyces cerevisiae and Trichosporon asahii were also found in high numbers during the fermentation. Exophiala dermatidis, often associated with blastomycosis, was found in the mass before inoculation and during the initial stages of the fermentation. Examination of these indigenous fermented foods may provide clues as to how food production and preservation can be expanded and thereby contribute to improve nutrition in native tribes in the region.  相似文献   

8.
Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production.  相似文献   

9.
The yeast species composition of 12 cocoa bean fermentations carried out in Brazil, Ecuador, Ivory Coast and Malaysia was investigated culture-independently. Denaturing gradient gel electrophoresis of 26S rRNA gene fragments, obtained through polymerase chain reaction with universal eukaryotic primers, was carried out with two different commercial apparatus (the DCode and CBS systems). In general, this molecular method allowed a rapid monitoring of the yeast species prevailing during fermentation. Under similar and optimal denaturing gradient gel electrophoresis conditions, the CBS system allowed a better separated band pattern than the DCode system and an unambiguous detection of the prevailing species present in the fermentation samples. The most frequent yeast species were Hanseniaspora sp., followed by Pichia kudriavzevii and Saccharomyces cerevisiae, independent of the origin of the cocoa. This indicates a restricted yeast species composition of the cocoa bean fermentation process. Exceptionally, the Ivorian cocoa bean box fermentation samples showed a wider yeast species composition, with Hyphopichia burtonii and Meyerozyma caribbica among the main representatives. Yeasts were not detected in the samples when the temperature inside the fermenting cocoa pulp-bean mass reached values higher than 45 °C or under early acetic acid production conditions.  相似文献   

10.
Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.  相似文献   

11.
The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.  相似文献   

12.
The succession of yeasts colonizing the fallen ripe amapa fruit, from Parahancornia amapa, was examined. The occupation of the substrate depended on both the competitive interactions of yeast species, such as the production of killer toxins, and the selective dispersion by the drosophilid guild of the amapa fruit. The yeast community associated with this Amazon fruit differed from those isolated from other fruits in the same forest. The physiological profile of these yeasts was mostly restricted to the assimilation of a few simple carbon sources, mainly L-sorbose, D-glycerol, DL-lactate, cellobiose, and salicin. Common fruit-associated yeasts of the genera Kloeckera and Hanseniaspora, Candida guilliermondii, and Candida krusei colonized fruits during the first three days after the fruit fell. These yeasts were dispersed and served as food for the invader Drosophila malerkotliana. The resident flies of the Drosophila willistoni group fed selectively on patches of yeasts colonizing fruits 3 to 10 days after the fruit fell. The killer toxin-producing yeasts Pichia kluyveri var. kluyveri and Candida fructus were probably involved in the exclusion of some species during the intermediate stages of fruit deterioration. An increase in pH, inhibiting toxin activity and the depletion of simple sugars, may have promoted an increase in yeast diversity in the later stages of decomposition. The yeast succession provided a patchy environment for the drosophilids sharing this ephemeral substrate.  相似文献   

13.
The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today''s food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a “core” and a “variable” part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations (“core” yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations (“variable” yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.  相似文献   

14.
The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.  相似文献   

15.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as "Weissella ghanaensis," was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named "Acetobacter senegalensis" (A. tropicalis-like) and "Acetobacter ghanaensis" (A. syzygii-like).  相似文献   

16.
Cocoa fermentations were performed in wooden boxes under the following four experimental regimens: beans naturally fermented with wild microflora; aseptically prepared beans with no inoculum; and beans inoculated with a defined cocktail containing microorganisms at a suitable concentration either at zero time or by using phased additions at appropriate times. The cocktail used consisted of a yeast, Saccharomyces cerevisiae var. chevalieri, two lactic acid bacterial species, Lactobacillus lactis and Lactobacillus plantarum, and two acetic acid bacterial species, Acetobacter aceti and Gluconobacter oxydans subsp. suboxydans. The parameters measured were cell counts (for yeasts, filamentous fungi, lactic acid bacteria, acetic acid bacteria, and spore formers, including reisolation and identification of all residual cell types), sugar, ethanol, acetic acid, and lactic acid contents (and contents of other organic acids), pH, and temperature. A cut test for bean quality and a sensorial analysis of chocolate made from the beans were also performed. The natural fermentation mimicked exactly the conditions in 800-kg boxes on farms. The aseptic box remained largely free of microflora throughout the study, and no significant biochemical changes occurred. With the zero-time inoculum the fermentation was almost identical to the natural fermentation. The fermentation with the phased-addition inoculum was similar, but many changes in parameters were slower and less pronounced, which led to a slightly poorer end product. The data show that the nearly 50 common species of microorganisms found in natural fermentations can be replaced by a judicious selection and concentration of members of each physiological group. This is the first report of successful use of a defined, mixed starter culture in such a complex fermentation, and it should lead to chocolate of more reliable and better quality.  相似文献   

17.
The diversity of populations of yeast and lactic acid bacteria (LAB) in pig feeds fermented at 10, 15, or 20 degrees C was characterized by rRNA gene sequencing of isolates. The feeds consisted of a cereal grain mix blended with wet wheat distillers' grains (WWDG feed), whey (W feed), or tap water (WAT feed). Fermentation proceeded for 5 days without disturbance, followed by 14 days of daily simulated feed outtakes, in which 80% of the contents were replaced with fresh feed mixtures. In WWDG feed, Pichia galeiformis became the dominant yeast species, independent of the fermentation temperature and feed change. The LAB population was dominated by Pediococcus pentosaceus at the start of the fermentation period. After 3 days, the Lactobacillus plantarum population started to increase in feeds at all temperatures. The diversity of LAB increased after the addition of fresh feed components. In W feed, Kluyveromyces marxianus dominated, but after the feed change, the population diversity increased. With increasing fermentation temperatures, there was a shift toward Pichia membranifaciens as the dominant species. L. plantarum was the most prevalent LAB in W feed. The WAT feed had a diverse microbial flora, and the yeast population changed throughout the whole fermentation period. Pichia anomala was the most prevalent yeast species, with increasing occurrence at higher fermentation temperatures. Pediococcus pentosaceus was the most prevalent LAB, but after the feed change, L. plantarum started to proliferate. The present study demonstrates that the species composition in fermented pig feed may vary considerably, even if viable cell counts indicate stable microbial populations.  相似文献   

18.
The genetic diversity of the types or authentic strains of 20 facultative synonyms of Pichia membranifaciens (E.C. Hansen) E.C. Hansen was revealed on the basis of large-subunit (26S) rDNA D1/D2 domain and internal transcribed spacer region sequencing and electrophoretic karyotyping. At least five separate species were recognized among the strains studied. Fourteen strains were confirmed to belong to P. membranifaciens. Strain CBS 241, an authentic strain of Zygosaccharomyces chevalieri Guilliermond var. fermentati Saito, should be assigned to Pichia manshurica Santa María. Strain CBS 243, an authentic strain of Zygopichia chiantigiana Castelli, is conspecific with CBS 2287, the type strain of Pichia fluxuum (Phaff & Knapp) Kreger-van Rij. Strain CBS 1367, the type of Zygosaccharomyces bisporus Anderson, belongs to Pichia kluyveri Bedford var. kluyveri. Strain CBS 989, the type of Cryptococcus californicus Anderson & Skinner, represents a distinct species, for which a new combination, Candida californica comb. nov., is proposed. The taxonomic status of strains CBS 189, the type of Pichia calliphorae Kl?cker, and CBS 214, the type of Pichia derossii Castelli, remain to be studied further. Their D1/D2 sequences and chromosomal DNA banding patterns were similar to those of P. membranifaciens, but their internal transcribed spacer sequences differed significantly.  相似文献   

19.
Mycotoxins are secondary metabolites which can form on various foodstuffs through the growth of certain fungi. Ochratoxin A (OTA) and the aflatoxins B1 B2, G1 and G2 have been detected in low concentrations in cocoa and cocoa products. As regards the question of in what stages of the cocoa production process a contamination with the mycotoxin-producing moulds and the formation of mycotoxins takes place, it is assumed that in the case of cocoa the contamination is not concerning the individual beans but the fermentation units. A model test was carried out to provide information on the process by which a possible carryover of the above-mentioned mycotoxins to cocoa beans occurs during the fermentation process. For this purpose fresh cocoa beans were left to soak in an artificial mycotoxin-containing fermentation solution. The mycotoxin levels in the cocoa beans were regularly determined over a period of 12 days. New findings were made as regards the migration of mycotoxins during the fermentation process. We interpret the divergent uptake behaviour of the mycotoxins to indicate that the transport of OTA and that of aflatoxins does not take place in the same manner. This is possibly caused by chemico-physical effects, such as the different polarities of the mycotoxins. Presented at the 28th Mykotoxin-Workshop, Bydgoszcz, Poland, May 29–31, 2006  相似文献   

20.
Fermented cocoa beans (Theobroma cacao L., Sterculiaceae) from different countries of origin (Ecuador, Ghana, Trinidad) and cocoa beans roasted under defined conditions (industrial roasting; 150-220 degrees C for 20 min, dry roasting in conventional oven) were analyzed for their contents of certain chiral hydroxy acids, catechins, and amino acids. Cocoa beans are fermented, dried, and industrially transformed by roasting for the production of chocolate, cocoa powders, and other cocoa-related products. Fermentation and roasting conditions influence the contents of chiral compounds such as hydroxy acids, amino acids, and polyphenols, depending on technological procedures as well as some technical parameters. The aim of this work was to check if the content and nature of the named chiral compounds present both in fermented and roasted cocoa beans could be related to the traditional parameters used to classify the variety of seeds and the degree of fermentation. The extent of racemization of amino acids in fermented cocoa beans was low while it slowly increased during roasting, depending on the temperature applied. L-lactic acid was always higher than the D-form while citric acid was generally the most abundant hydroxy acid detected in beans. A correlation was found between polyphenol content and degree of fermentation, while epimerization of (-)-epicatechin to (+)-catechin was observed during roasting. On the whole, results showed that several chiral compounds could be considered as good quality markers for cocoa seeds and cocoa-related products of different quality and geographic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号