首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustainable management of cabbage aphids, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is a major goal for collard, Brassica oleracea (L.) var. acephala (Brassicaceae), growers globally. Host finding ability of insect pests is significantly affected by diversified cropping systems, and this approach is being utilized currently as a pest management tool. Soil nutrition and its interaction with the cropping systems could have a significant effect on the general performance of collards and the infestation by cabbage aphids. In a search for a sustainable cabbage aphid control, a two‐season field experiment was carried out with two intercrops, collards and chilli, Capsicum frutescens (L.) (Solanaceae), and collards and spring onions, Allium cepa (L.) (Alliaceae), and a collard monoculture. For each of the cropping systems, nitrogen (N) was applied to the soil as a top‐dress at 20, 25, 30, and 35 g per collard plant. The response factors monitored were collard yield (fresh weight) and aphid infestation on collards. Spring onion‐collard intercrop had the lowest aphid density and the highest yield. Collard monoculture had the highest aphid infestation and the lowest yield. High levels of N led to increased infestation of collards by aphids, but also led to a significant increase in the yield of collards. Significant interactions between the N rates and the cropping systems were observed on some sampling dates, with the highest yield being realized under a combination of spring onion‐collard intercrop at a N rate of 30 g per plant. High aphid density led to a decrease in the yield of collards. It was concluded that with a spring onion‐collard intercrop, the soil N level could be raised from the blanket rate of 20–30 g per plant and this would lead to an increase in yield.  相似文献   

2.
Abstract Studies were conducted to assess the numerical response of ground‐dwelling arthropods to a habitat management system (‘push–pull’) developed to control maize stemborers using spiders (Araneae) as an indicator group. In this cropping system, maize is intercropped with a stemborer moth‐repellent (push) plant while an attractant trap crop (pull) is planted around this intercrop. Two study sites in western Kenya and one site at the Grain Crops Institute of the Agricultural Research Council in Potchefstroom, South Africa, were sampled. Treatments comprised a maize monocrop and an intercrop of maize and desmodium, Desmodium uncinatum Jacq., with Napier grass, Pennisetum purpureum (Schumach), as a trap crop around the field (‘push–pull’) in each site. Experiments were laid out in a completely randomized design with four replications at each site. Ground‐dwelling spiders were sampled using a combination of pitfall traps and soil samples. A total of 2175 spiders, 78 species in 18 families, were recovered in Kenya and 284 spiders, 34 species in nine families, were recovered in South Africa. Lycosidae was the most abundant family, accounting for >50% of all individual spiders and 27.6% by species richness. Spiders were significantly more abundant at the Kenyan sites than in South Africa while species diversity was significantly higher in South Africa than at the Kenyan sites. At all sites, spider abundance was significantly higher in the ‘push–pull’ than in the maize monocrop plots. However, the overall spider diversity was only significantly higher in the ‘push–pull’ than in the maize monocrop plots in South Africa. Moreover, species dominance did not differ between the two cropping systems at all sites. The results showed that the ‘push–pull’ system evidently enhances overall abundance of spiders, illustrating its potential in further pest control in the maize agroecosystems where spiders may often be one of the most important predatory groups.  相似文献   

3.
Vegetable farmers of the El Rahad Scheme (a newly developed scheme situated between latitude 13°31′–14°25′ north and longitude 33°31–34°32′ east) used to extend irrigation frequency for onion production as they believed it would hamper and suppress thrips incidence. Thrips, T. tabaci, is the only major insect pest of onion in the El Rahad Scheme and the influence of irrigation intervals on the population density of the pest and on onion yield was not quantified. Irrigation is a factor in the development of crop pests and the levels of the pest population are related to the commencement of irrigation. The effect of irrigation frequency on the development of onion thrips and yield was investigated and the response was found to be a significant increase in the population density of the pests from February to March with shorter irrigation frequency. A steady increase of thrips population was noted from February and March and a sharp decline was recorded in April during both the 1992/93 and 1993/94 seasons. At wider irrigation intervals, levels of the pest population were significantly less from February to March during both seasons. Total bulb yield and average bulb weight were significantly higher at shorter irrigation frequencies when compared with extended frequencies. The same pattern of results existed throughout the course of the experiment.  相似文献   

4.
Identifying locations where onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), overwinter and subsequently disperse is important for designing control strategies. In upstate New York from 2003 through 2006, potential overwintering sites in the commercial onion, Allium cepa L., cropping system were investigated early in the spring before onion seedling emergence and again late in the season after onions were harvested. Onion thrips adults were sampled directly from the soil and indirectly from the soil by using emergence cages. Sampling locations included onion field interiors and edges and areas outside of these fields, including woods. Host material sampled included onion culls; volunteer onions, which sprout from cull onions left behind after harvest; and weeds. Onion thrips adults were found in all sections of onion fields and in locations outside of onion fields, with the fewest emerging from woods. Emergence began in early May and extended into June. Peak emergence occurred during the last half of May, at which time 50-75% of the population had emerged. Adults colonized volunteer onions as early as late March and as late as mid-November. No adults were found overwintering in onion cull piles. Adults also colonized several weed species, especially pigweed, Amaranthus hybridis L., and lambsquarters, Chenopodium album L., late in the fall. Our results indicate that onion thrips adults overwinter in the soil within and near onion fields and that they probably colonize volunteer onion plants before subsequent generations infest the onion crop in the spring. Volunteer onions and weeds also provide onion thrips with a host after onions are harvested. Consequently, onion thrips management strategies should include tactics that reduce volunteer onion and weed abundance.  相似文献   

5.
Maize/soybean strip intercropping is a commonly used system throughout China with high crop yields at reduced nutrient input compared to sole maize. Maize is the taller crop, and due to its dominance in light capture over soybean in the intercrop, maize is expected to outperform maize in sole cropping. Conversely, soybean is the subordinate crop and intercropped soybean plants are expected to perform worse than sole soybean. Crop plants show plastic responses in plant architecture to their growing conditions to forage for light and avoid shading. There is little knowledge on plant architectural responses to growing conditions in simultaneous (non-relay) intercropping and their relationship to species yields. A two-year field experiment with two simultaneous maize/soybean intercropping systems with narrow and wide strips was conducted to characterise architectural traits of maize and soybean plants grown as intercrop and sole crops. Intercropped maize plants, especially those in border rows, had substantially greater leaf area, biomass and yield than maize plants in sole crops. Intercropped soybean plants, especially those in border rows, had lower leaf area, biomass and yield than sole soybean plants. Overall intercrop performance was similar to that of sole crops, with the land equivalent ratio (LER) being only slightly greater than one (1.03–1.08). Soybean displayed typical shade avoidance responses in the intercrop, such as greater internode elongation and changes in specific leaf area, but these responses could not overcome the consequences of the competition with the taller maize plants. Therefore, in contrast to relay intercrop systems, in the studied simultaneous maize/soybean system, plastic responses did not contribute to practically relevant increases in resource capture and yield at whole system (i.e., intercrop) level.  相似文献   

6.
Onion thrips, Thrips tabaci Lindeman, is the primary pest of onion, which is grown in either large-scale, monoculture systems surrounded by other onion fields, or in small-scale systems surrounded by multiple vegetable crops. In 2011 and 2012, populations of insect predators and their prey, T. tabaci, were assessed weekly in onion fields in both cropping systems. Insect predator taxa (eight species representing five families) were similar in onions grown in both systems and the most commonly occurring predators were from the family Aeolothripidae. Seasonal population dynamics of predators and T. tabaci followed similar trends within both cropping systems and tended to peak in late July and early August. Predator abundance was low in both systems, but predator abundance was nearly 2.5 to 13 times greater in onion fields in the small-scale system. T. tabaci abundance often positively predicted predator abundance in both cropping systems.  相似文献   

7.
Two field experiments were conducted during 2004 and 2005 cropping seasons at Adet Agricultural Research Center, Ethiopia to assess yield losses caused by chocolate spot(Botrytis fabae) of faba bean in sole and mixed cropping systems using two cultivars. Cropping systems were sole faba bean (FB), faba bean mixed with field pea (FB: FP), barley (FB: BA) and maize (FB: MA). Mancozeb was sprayed at the rate of 2.5 kg a.i/ha at 7-, 14- and 21-day interval to generate different levels of chocolate spot disease in all the four cropping systems, and unsprayed control was also included. The treatments were arranged in a randomised complete block design (RCBD) with four replications. FB: MA mixed cropping significantly reduced disease severity and the area under disease progress curve (AUDPC) and increased faba bean grain yield. The highest faba bean grain yield among the three mixed croppings under different spray schedules was obtained from FB: MA mixed cropping in both 2004 and 2005 (2.56 and 3.74 t/ha, respectively) cropping seasons. There were highly significant yield differences (P < 0.05) among the spray intervals of mancozeb in both seasons. The highest grain yield (4.9 t/h) was recorded from the 7-day spray interval in 2005. The unsprayed faba bean had a lower grain yield (1.9 t/ha in 2004 and 2.3 t/ha in 2005) compared to the sprayed plots. The highest relative yield loss (67.5%) was calculated in 2005 from FB: FP mixed cropping in unsprayed plots. The relative yield losses in the unsprayed plots were in the range of 35.8–41.5% in 2004 and 52.6–67.5% in the 2005 cropping season. Severity and AUDPC were inversely correlated with faba bean grain yield. Significant differences were recorded in the 100-seed weight and days to maturity (DM). The unsprayed plots had shorter DM ranging from 126 to 128.5 day (except FB: MA mixed cropping) in 2004 and 122–123.9 days in 2005. In the sprayed plots DM was relatively longer than the unsprayed plots. A higher seed weight was recorded in the sole FB (56 g) and FB: MA (55 g) mixed cropping, and the lowest value of 100-seed weight was recorded from FB: FP (53 g) mixed cropping. The productivity of the mixed cropping evaluated by land equivalent ratio (LER) exceeded that of sole cropping. Faba bean grain yield was highly influenced by the severity of chocolate spot. The disease affects the DM, forcing early maturing of the plants.  相似文献   

8.
The study aimed at determining thrips species composition and thrips population density on French bean planted as a sole crop and as an intercrop with either sunflower, Irish potato, or baby corn, in various combinations. Field experiments were conducted in two seasons to examine: (1) thrips population development and thrips species composition over time, (2) effect of intercrops on thrips population density and natural enemies, and (3) effect of intercrops on French bean yield. The experiments were conducted at the Kenya Agricultural Research Institute, Embu, Kenya in a randomized complete block design with four replicates. The thrips population on French beans increased with time. It showed a peak at the flowering stage then started declining when the crops were nearing senescence. French beans hosted four thrips species, Megalurothrips sjostedti (Trybom), Frankliniella schultzei (Trybom), Frankliniella occidentalis (Pergande), and Hydatothrips aldolfifriderici (Karny) (all Thysanoptera: Thripidae) in order of decreasing abundance. The main thrips species on Irish potato and sunflower was F. schultzei. Baby corn hosted only Frankliniella williamsi (Hood) and Thrips pusillus (Bagnall). A monocrop of French bean hosted more thrips than a French bean intercrop mix. Thrips natural enemies such as Orius spp. and Ceranisus spp. were recorded in all crop plants but in especially high numbers on French bean and baby corn, respectively. Plots with French bean alone had about 1.4 times higher yields compared to intercropped plots of French bean with sunflower and French bean with baby corn. However, the percentage of pods that could get rejected on the market due to thrips damage was highest on plots with French bean alone (68 and 63%) and lowest on plots with French bean and baby corn (35 and 37%) in the first and second seasons, respectively. This study showed that a complex of thrips is found in the field and its composition varies with crop stage and species. Intercropping French bean with other crops compromises on French bean yield but reduces damage to the French bean pods, thereby enhancing marketable yield.  相似文献   

9.
The spread of cassava mosaic disease (CMD) and populations of the whitefly vector (Bemisia tabaci) were recorded in cassava when grown alone and when intercropped with maize and/or cowpea. The trials were planted under conditions of high inoculum pressure in 1995 and 1996 at a site in the lowland rainforest zone of southern Cameroon. In the 1995 experiment, the maize and cowpea intercrops reduced the final incidence of CMD in the cassava cvs. Dschang White and Dschang Violet, but not in the more resistant cv. Improved. In the 1996 experiment with cv. Dschang Violet, the maize and cowpea intercrops grown alone or together decreased adult whitefly populations on cassava by 50% and CMD incidence by 20%. The monomolecular population growth model generally provided the best fit for disease progress. Areas under the disease progress curves (AUDPCs) and incidences expressed as multiple infection units were significantly (P<0.05) less for cassava intercropped with maize and/or cowpea than in cassava alone; times to 50% CMD incidence were significantly (P<0.05) longer in all intercrop systems. In 1995 the basic infection rates (r) were similarly low (0.010 per month) in the moderately resistant cv. Dschang Violet intercropped with maize and in all treatments in the more resistant cv. Improved. By contrast, rates were significantly higherfor cv. Dschang Violet alone or with cowpea and in all treatments for the less resistant cv. Dschang White (0.030–0.060). In 1996, r values in cassava grown alone (0.077) were significantly larger (P<0.05) than in the other cropping systems (0.042–0.052). There were no significant differences in the symptom severity in the different cropping systems. Disease foci were isodametric and more compact in plots containing cowpea than in other cropping systems.  相似文献   

10.
Stem borers are the most important maize pests in the humid forest zone of Cameroon. Field trials were conducted in the long and short rainy seasons of 2002 and 2003 to assess the level of damage and yield reductions caused by stem borers in monocropped maize and in maize intercropped with non-host plants such as cassava, cowpea and soybean. The intercrops were planted in two spatial arrangements, i.e. alternating hills or alternating rows. All intercrops and the maize monocrop were grown with and without insecticide treatment for assessment of maize yield loss due to borer attacks. The land-use efficiency of each mixed cropping system was evaluated by comparing it with the monocrop. The temporal fluctuation of larval infestations followed the same pattern in all cropping systems, but at the early stage of plant growth, larval densities were 21.3-48.1% higher in the monocrops than in intercrops, and they tended to be higher in alternating rows than alternating hills arrangements. At harvest, however, pest densities did not significantly vary between treatments. Maize monocrops had 3.0-8.8 times more stems tunnelled and 1.3-3.1 times more cob damage than intercrops. Each percentage increase in stem tunnelling lowered maize grain yield by 1.10 and 1.84 g per plant, respectively, during the long and short rainy season in 2002, and by 5.39 and 1.41 g per plant, respectively, in 2003. Maize yield losses due to stem borer were 1.8-3.0 times higher in monocrops than in intercrops. Intercrops had generally a higher land-use efficiency than monocrops, as indicated by land-equivalent-ratios and area-time-equivalent-ratios of >1.0. Land-use efficiency was similar in both spatial arrangements. At current price levels, the net production of mixed cropping systems was economically superior to controlling stem borers with insecticide in monocropped maize. The maize-cassava intercrop yielded the highest land equivalent ratios and the highest replacement value of the intercrop. At medium intensity cropping this system is thus recommended for land-constrained poor farmers who do not use external inputs such as fertilizer and insecticides.  相似文献   

11.
The aim of the present research work was to investigate the population density and species composition of thrips infesting crops of onion in South Poland. The flight activity of thrips was monitored using blue sticky traps and plant samples were taken to record the number of adult and Larvae of thrips on onion. In 2004 the thrips were caught into blue sticky traps from the start of June to the end of the first decade of September. The peak flight activity was noticed in the middle of July. In 2004 the significant growth of the numerousness of adult thrips on onion grown from seeds was recorded in the middle and in the third decade of August, whereas on onion grown from sets in the first decade of August. Thrips larvae were not observed during the whole vegetation season. In 2005, the thrips were caught into blue sticky traps form the half of June to the first decade of September. The peak flight activity was noticed in the first decade of August. In 2005 the rapid growth of the numerousness of adult thrips on onion grown from seeds was recorded in the third decade of July. The highest number of adult thrips on onion grown from sets was noticed at the beginning of August. Thrips larvae were observed on onion grown from seeds in the third decade of July and at the end of the second decade of August. In both years of observations the most numerous species was Frankliniella intonsa Tryb. The second most numerous species was Thrips tabaci Lindeman. In 2004, the most numerous species was predacious Aeolothrips intermedius Bagnall.  相似文献   

12.
Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield advantage. Here, we assessed the productivity of wheat–maize intercropping as compared to sole wheat and sole maize, and the associated differences in wheat shoot and leaf traits. In two field experiments, intercrop wheat and maize were both grown in alternating strips consisting of six rows of wheat and two rows of maize. The traits of wheat plants in border rows of the strips were compared to the traits of plants in the inner rows as well as those in sole wheat. Leaf development, chlorophyll concentration and azimuth, as well as the final leaf and ear sizes, tiller dynamics of wheat and yield components of both crops were determined. The relative densities of wheat and maize in the intercrop were 0.33 and 0.67, respectively, but the corresponding relative yields compared to the respective monocultures were 0.46 for wheat and 0.77 for maize. Compared to wheat plants in the inner rows of the intercrop strips as well as in the monoculture, border‐row wheat plants in the intercrop strips had (a) more tillers owing to increased tiller production and survival, and thus more ears, (b) larger top leaves on the main stem and tillers, (c) higher chlorophyll concentration in leaves, (d) greater number of kernels per ear and (e) smaller thousand‐grain weight. Grain yield per metre row length of border‐row wheat was 141% higher than the sole wheat, and was 176% higher than the inner‐row wheat. The results demonstrate the importance of plasticity in architectural traits for yield advantage in multispecies cropping systems.  相似文献   

13.
We conducted a preliminary comparison of greenhouses using positive-pressure forced ventilation (PFV) systems and natural ventilation (NV) systems, and assessed the effectiveness of both systems for preventing the invasion of greenhouses used to cultivate tomatoes by insect pests. In Trial 1 (August–December 2006), greenhouses using a PFV system and an insect-proof screen (mesh size 1.0 mm) had fewer sweetpotato whiteflies and Bemisia tabaci (Gennadius), and more onion thrips, Thrips tabaci (Lindeman), than greenhouses that employed an NV system fitted with the same screen. Tomato leafminers, Liriomyza sativae Blanchard, were not observed in the greenhouse using the PFV system, but some were observed in the greenhouse using the NV system. In Trial 2 (August–December 2007), the greenhouse using the PFV system combined with an insect-proof screen (mesh size 0.4 mm) had higher whitefly densities after late October compared to the greenhouse using the NV system and the same screen. However, there were more thrips in the greenhouse using the PFV system compared to the greenhouse using the NV system. In both trials, Tomato yellow leaf curl virus, which is transmitted by B. tabaci, was recorded in the greenhouse using the NV system but not in the greenhouse using the PFV system. The results showed that the PFV system was effective for preventing invasion by leafminers and partially effective for preventing invasion by whiteflies, but not effective for preventing invasion by thrips.  相似文献   

14.
Most management practices of Sitophilus zeamais Motschulsky, a field-to-post-harvest insect pest of cereals, have focused on post harvest control methods. This experiment was designed to investigate the potential of cropping system and modification of time of harvest to control S. zeamais. Intercropping and harvest time modification had significant (P < 0.05) effect on the number of S. zeamais emerging 42 days post-harvest. For the early harvest (15 weeks after planting (WAP)), the mean number of S. zeamais recorded from a maize monoculture (7.39) was significantly (P < 0.05) higher than the mean numbers of weevils emerging from a maize–soybean intercrop (2.31), but not significantly higher than the number recorded in maize–groundnut (3.87) intercrop. For the late harvest (18 WAP), the mean number of emerged adult observed in the maize–soybean intercrop (6.13) was significantly lower than the mean number of adult emerging from the monocrop maize (13.24). Maize–groundnut intercrop did not significantly reduce field infestation of S. zeamais compared with monocrop maize. Percentage weight loss observed in early harvested maize was significantly (P < 0.0001) lower than what was observed in late-harvested maize. Percentage weight loss was highest in stored maize harvested from monocrop maize plots for the early harvest, whereas intercropping maize with soybean reduced percentage weight loss when harvest was delayed.  相似文献   

15.
Four studies were conducted in Georgia during spring 1999, 2000, 2001, and 2002 to evaluate various management tactics for reducing thrips and thrips-vectored tomato spotted wilt virus (TSWV) in tomato and their interactions relative to fruit yield. Populations of thrips vectors of TSWV, Frankliniella occidentalis (Pergande) and Frankliniella fusca (Hinds), were determined using flower and sticky trap samples. The management practices evaluated were host plant resistance, insecticide treatments, and silver or metallic reflective mulch. Averaged over all tests, the TSWV-resistant tomato 'BHN444' on silver mulch treatment had the largest effect in terms of reducing thrips and spotted wilt and increasing marketable yield. Of the insecticide treatments tested, the imidacloprid soil treatment followed by early applications of a thrips-effective foliar insecticide treatment provided significant increase in yield over other treatments. Tomato yield was negatively correlated with the number of F. fusca and percentage of TSWV incidence. F. occidentalis per blossom was positively correlated with percentage of TSWV incidence, but not with yield. No significant interactions were observed between cultivar reflective mulch main plot treatments and insecticide subplot treatments; thus, treatment seemed to be additive in reducing the economic impact of thrips-vectored TSWV. Control tactics that manage thrips early in the growing season significantly increased tomato yield in years when the incidence of TSWV was high (>17%).  相似文献   

16.
Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.  相似文献   

17.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

18.
Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0–20 cm) Cd concentration was 0.45–0.62 mg kg?1, which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future.  相似文献   

19.
An epidemic outbreak of severe yellow leaf curl disease was reported in field grown tomato within Zhejiang Province of China in the autumn–winter cropping season of 2006. A molecular diagnostic survey was carried out based on comparisons of partial and complete viral DNA sequences. Comparison of partial DNA‐A sequences amplified with degenerate primers specific for begomoviruses confirmed the presence of two types of begomoviruses. The complete DNA sequences of five isolates, corresponding to the two types, were determined. Sequence comparisons and phylogenetic analysis revealed that they correspond to two previously identified begomoviruses, Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus. The satellite DNAβ molecule was not detected in these samples by either PCR or Southern blot hybridization analysis. There has been no previous report of geminivirus disease incidence in Zhejiang Province, indicating that the introduction of these two tomato infecting geminiviruses into the agro‐ecological zone of South‐eastern China is a fairly recent event. The implications for disease control are discussed.  相似文献   

20.
《Journal of Asia》2020,23(1):132-137
Barrier cropping plays an essential role in controlling insect pests and insect-transmitted diseases in cultural control. It has been proven efficient in suppressing the spread of nonpersistently transmitted viruses. For suppressing the spread of persistently transmitted viruses, barrier cropping is not considered an effective control strategy because barrier plants cannot act as a virus sink to purge the virus in the vector. However, few successful cases of barrier cropping suppressing the spread of persistently transmitted viruses have been reported. The objectives of the present study were to screen candidates (cucumber, okra, Chinese kale, soybean, and corn) for potential barrier plants to control tomato yellow leaf curl Thailand virus (TYLCTHV) and examine whether prefeeding on these plants can reduce the virus titer in its vector, Bemisia tabaci, thus reducing TYLCTHV transmission. The results revealed that nonviruliferous whiteflies preferred cucumber and okra to tomato, whereas viruliferous whiteflies preferred cucumber to tomato. Although prefeeding on cucumber, okra, and Chinese kale did not reduce the titer of TYLCTHV in viruliferous whiteflies, the vector transmission rate decreased after the whiteflies fed on Chinese kale. It implies that planting Chinese kale as a barrier plant for tomato cultivation may reduce the incidence of TYLCTHV. In addition, the preference to cucumber plants may reduce the incidence of whiteflies acquiring TYLCTHV from virus-infected tomato plants and of viruliferous whiteflies inoculating the virus into healthy tomato plants, thereby reducing the disease incidence. Further field trials of barrier cropping using the candidate plants are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号