首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Chi JX  Huang L  Nie W  Wang J  Su B  Yang F 《Chromosoma》2005,114(3):167-172
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n=6 in the female and 7 in the male, the karyotypic evolution of which through extensive tandem fusions and several centric fusions has been well-documented by recent molecular cytogenetic studies. In an attempt to define the fusion orientations of conserved chromosomal segments and the molecular mechanisms underlying the tandem fusions, we have constructed a highly redundant (more than six times of whole genome coverage) bacterial artificial chromosome (BAC) library of Indian muntjac. The BAC library contains 124,800 clones with no chromosome bias and has an average insert DNA size of 120 kb. A total of 223 clones have been mapped by fluorescent in situ hybridization onto the chromosomes of both Indian muntjac and Chinese muntjac and a high-resolution comparative map has been established. Our mapping results demonstrate that all tandem fusions that occurred during the evolution of Indian muntjac karyotype from the acrocentric 2n=70 hypothetical ancestral karyotype are centromere–telomere (head–tail) fusions.  相似文献   

2.

Background

Indian muntjac (Muntiacus muntjak vaginalis) has an extreme mammalian karyotype, with only six and seven chromosomes in the female and male, respectively. Chinese muntjac (Muntiacus reevesi) has a more typical mammalian karyotype, with 46 chromosomes in both sexes. Despite this disparity, the two muntjac species are morphologically similar and can even interbreed to produce viable (albeit sterile) offspring. Previous studies have suggested that a series of telocentric chromosome fusion events involving telomeric and/or satellite repeats led to the extant Indian muntjac karyotype.

Results

We used a comparative mapping and sequencing approach to characterize the sites of ancestral chromosomal fusions in the Indian muntjac genome. Specifically, we screened an Indian muntjac bacterial artificial-chromosome library with a telomere repeat-specific probe. Isolated clones found by fluorescence in situ hybridization to map to interstitial regions on Indian muntjac chromosomes were further characterized, with a subset then subjected to shotgun sequencing. Subsequently, we isolated and sequenced overlapping clones extending from the ends of some of these initial clones; we also generated orthologous sequence from isolated Chinese muntjac clones. The generated Indian muntjac sequence has been analyzed for the juxtaposition of telomeric and satellite repeats and for synteny relationships relative to other mammalian genomes, including the Chinese muntjac.

Conclusions

The generated sequence data and comparative analyses provide a detailed genomic context for seven ancestral chromosome fusion sites in the Indian muntjac genome, which further supports the telocentric fusion model for the events leading to the unusual karyotypic differences among muntjac species.  相似文献   

3.
Huang L  Chi J  Wang J  Nie W  Su W  Yang F 《Genomics》2006,87(5):608-615
The black muntjac (Muntiacus crinifrons, 2n = 8[female symbol]/9[male symbol]) is a critically endangered mammalian species that is confined to a narrow region of southeastern China. Male black muntjacs have an astonishing X1X2Y1Y2Y3 sex chromosome system, unparalleled in eutherian mammals, involving approximately half of the entire genome. A high-resolution comparative map between the black muntjac (M. crinifrons) and the Chinese muntjac (M. reevesi, 2n = 46) has been constructed based on the chromosomal localization of 304 clones from a genomic BAC (bacterial artificial chromosome) library of the Indian muntjac (M. muntjak vaginalis, 2n = 6[female symbol]/7[male symbol]). In addition to validating the chromosomal homologies between M. reevesi and M. crinifrons defined previously by chromosome painting, the comparative BAC map demonstrates that all tandem fusions that have occurred in the karyotypic evolution of M. crinifrons are centromere-telomere fusions. The map also allows for a more detailed reconstruction of the chromosomal rearrangements leading to this unique and complex sex chromosome system. Furthermore, we have identified 46 BAC clones that could be used to study the molecular evolution of the unique sex chromosomes of the male black muntjacs.  相似文献   

4.
A clone of highly repetitive DNA, designated C5, was isolated from DNA of female Chinese muntjac cells. The nucleotide sequence of this clone is 80%–85% homologous to that of the satellite IA clone and other highly repetitive DNA clones previously obtained from the Indian muntjac. Using C5 as a probe for in situ hybridizations to chromosome preparations of cells of both the Chinese and Indian muntjacs, we were able to show that these repeated sequences occur in centromeric heterochromatin of the chromosomes of both Chinese and indian muntjac species. More significantly, non-random clusters of hybridization signals were detected on the arms of chromosomes of the Indian muntjac. These latter hybridization sites are postulated to be regions of interstitial heterochromatin and could be the remnants of centromeric heterochromatin from ancestral Chinese muntjac chromosomes. Our observations provide new supportive evidence for the tandem chromosome fusion theory that has been proposed for the evolution of the Indian muntjac karyotype.by P.B. Moens  相似文献   

5.
Liriodendron tulipifera L., a member of the Magnoliaceae, occupies an important phylogenetic position as a basal angiosperm that has retained numerous putatively ancestral morphological characters, and thus has often been used in studies of the evolution of flowering plants and of specific gene families. However, genomic resources for these early branching angiosperm lineages are very limited. In this study, we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from L. tulipifera. Flow cytometry estimates that this nuclear genome is approximately 1,802 Mbp per haploid genome (±16 SD). The BAC library contains 73,728 clones, a 4.8-fold genome coverage, with an average insert size of 117 kb, a chloroplast DNA content of 0.2%, and little to no bacterial sequences nor empty vector content clones. As a test of the utility of this BAC library, we screened the library with six single/low-copy genic probes. We obtained at least two positive clones for each gene and confirmed the clones by DNA sequencing. A total of 182 paired end sequences were obtained from 96 of the BAC clones. Using BLAST searches, we found that 25% of the BAC end sequences were similar to DNA sequences in GenBank. Of these, 68% shared sequence with transposable elements and 25% with genes from other taxa. This result closely reflected the content of random sequences obtained from a small insert genomic library for L. tulipifera, indicating that the BAC library construction process was not biased. The first genomic DNA sequences for Liriodendron genes are also reported. All the Liriodendron genomic sequences described in this paper have been deposited in the GenBank data library. The end sequences from shotgun genomic clones and BAC clones are under accession DU169330–DU169684. Partial sequences of Gigantea, Frigida, LEAFY, cinnamyl alcohol dehydrogenase, 4-coumarate:CoA ligase, and phenylalanine ammonia-lyase genes are under accession DQ223429–DQ223434. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
Organization and evolution of resistance gene analogs in peanut   总被引:4,自引:0,他引:4  
The scarcity of genetic polymorphism in Arachis hypogaea (peanut), as in other monophyletic polyploid species, makes it especially vulnerable to nematode, bacterial, fungal, and viral pathogens. Although no disease resistance genes have been cloned from peanut itself, the conserved motifs in cloned resistance genes from other plant species provide a means to isolate and analyze similar genes from peanut. To survey the number, diversity, evolutionary history, and genomic organization of resistance gene-like sequences in peanut, we isolated 234 resistance gene analogs (RGAs) by using primers designed from conserved regions of different classes of resistance genes including NBS-LRR, and LRR-TM classes. Phylogenetic and sequence analyses were performed to explore evolutionary relationships both among peanut RGAs and with orthologous genes from other plant taxa. Fifty-six overgos designed from the RGA sequences on the basis of their phyletic association were applied to a peanut BAC library; 736 hybridizing BAC clones were fingerprinted and contigs were formed in order to gain insights into the genomic organization of these genes. All the fingerprinting gels were blotted and screened with the respective overgos in order to verify the authenticity of the hits from initial screens, and to explore the physical organization of these genes in terms of both copy number and distribution in the genome. As a result, we identified 250 putative resistance gene loci. A correlation was found between the phyletic positions of the sequences and their physical locations. The BACs isolated here will serve as a valuable resource for future applications, such as map-based cloning, and will help improve our understanding of the evolution and organization of these genes in the peanut genome. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

7.
We have developed software that allows the prediction of the genomic location of a bacterial artificial chromosome (BAC) clone, or other large genomic clone, based on a simple restriction digest of the BAC. The mapping is performed by comparing the experimentally derived restriction digest of the BAC DNA with a virtual restriction digest of the whole genome sequence. Our trials indicate that this program identified the genomic regions represented by BAC clones with a degree of accuracy comparable to that of end-sequencing, but at considerably less cost. Although the program has been developed principally for use with Arabidopsis BACs, it should align large insert genomic clones to any fully sequenced genome.  相似文献   

8.
Improved knowledge of genome composition, especially of its repetitive component, generates important informations in both theoretical and applied research. In this study, we provide the first insight into the local organization of the sunflower genome by sequencing and annotating 349,380 bp from 3 BAC clones, each including one single-copy gene. These analyses resulted in the identification of 11 putative gene sequences, 18 full-length LTR retrotransposons, 6 incomplete LTR retrotransposons, 2 non-autonomous LTR-retroelements (LINEs), 2 putative DNA transposons fragments and one putative helitron. Among LTR-retrotransposons, non-autonomous elements (the so-called LARDs), which do not carry any protein-encoding sequence, were discovered for the first time in the sunflower. The insertion time of intact retroelements was measured, based on sister LTRs divergence. All isolated elements were inserted relatively recently, especially those belonging to the Gypsy superfamily. Retrotransposon families related to those identified in the BAC clones are present also in other species of Helianthus, both annual and perennial, and even in other Asteraceae. In one of the three BAC clones, we found five copies of a lipid transfer protein (LTP) encoding gene within less than 100,000 bp, four of which are potentially functional. Two of these are interrupted by LTR retrotransposons, in the intron and in the coding sequence, respectively. The divergence between sister LTRs of the retrotransposons inserted within the genes indicates that LTP gene duplication started earlier than 1.749 MYRS ago. On the whole, the results reported in this study confirm that the sunflower is an excellent system to study transposons dynamics and evolution.  相似文献   

9.
Sequencing of the rice genome has provided a platform for functional genomics research of rice and other cereal species. However, multiple approaches are needed to determine the functions of its genes and sequences and to use the genome sequencing results for genetic improvement of cereal crops. Here, we report a plant-transformation-competent, binary bacterial artificial chromosome (BIBAC) and bacterial artificial chromosome (BAC) based map of rice to facilitate these studies. The map was constructed from 20 835 BIBAC and BAC clones, and consisted of 579 overlapping BIBAC/BAC contigs. To facilitate functional analysis of chromosome 8 genomic sequence and cloning of the genes and QTLs mapped to the chromosome, we anchored the chromosomal contigs to the existing rice genetic maps. The chromosomal map consists of 11 contigs, 59 genetic markers, and 36 sequence tagged sites, spanning a total of ca. 38 Mb in physical length. Comparative analysis between the genetic and physical maps of chromosome 8 showed that there are 3 "hot" and 2 "cold" spots of genetic recombination along the chromosomal arms in addition to the "cold spot" in the centromeric region, suggesting that the sequence component contents of a chromosome may affect its local genetic recombination frequencies. Because of its plant transformability, the BIBAC/BAC map could provide a platform for functional analysis of the rice genome sequence and effective use of the sequencing results for gene and QTL cloning and molecular breeding.  相似文献   

10.
A minilibrary was constructed from DOP-PCR products using microdissected Y-chromosomes of Indian muntjac as DNA templates. Two microclones designated as IM-Y4-52 and IM-Y5-7 were obtained from negative screening of all three cervid satellite DNAs (satellites I, II, and IV). These two microclones were 295 and 382 bp in size, respectively, and shared 70% sequence homology. Southern blot analysis showed that the IM-Y4-52 clone was repetitive in nature with an 0.32-kb register in HaeIII digest. Sequence comparison revealed no similarities to DNA sequences deposited in the GenBank database, suggesting that the microclone sequences were from a novel satellite DNA family designated as cervid satellite V. A subclone of an Indian muntjac BAC clone which screened positive for IM-Y4-52 had a 3,325-bp insert containing six intact monomers, four deleted monomers, and two partial monomers. The consensus sequence of the monomer was 328 bp in length and shared more than 80% sequence homology with every intact monomer. A zoo blot study using IM-Y4-52 as a probe showed that the strong hybridization with EcoRI digested male genomic DNA of Indian muntjac, Formosan muntjac, Chinese muntjac, sambar deer, and Chinese water deer. Female genomic DNA of Indian muntjac, Chinese water deer, and Formosan muntjac also showed positive hybridization patterns. Satellite V was found to specifically localize to the Y heterochromatin region of the muntjacs, sambar deer, and Chinese water deer and to chromosome 3 of Indian muntjac and the X-chromosome of Chinese water deer.Y.-C. Li and Y.-M. Cheng contributed equally to this work.  相似文献   

11.
Most higher plants have complex genomes containing large quantities of repetitive DNA interspersed with low-copy-number sequences. Many of these repetitive DNAs are mobile and have homology to RNAs in various cell types. This can make it difficult to identify the genes in a long chromosomal continuum. It was decided to use genic sequence conservation and grass genome co-linearity as tools for gene identification. A bacterial artificial chromosome (BAC) clone containing sorghum genomic DNA was selected using a maize Adh1 probe. The 165 kb sorghum BAC was tested for hybridization to a set of clones representing the contiguous 280 kb of DNA flanking maize Adh1. None of the repetitive maize DNAs hybridized, but most of the low-copy-number sequences did. A low-copy-number sequence that did cross-hybridize was found to be a gene, while one that did not was found to be a low-copy-number retrotransposon that was named Reina. Regions of cross-hybridization were co-linear between the two genomes, but closer together in the smaller sorghum genome. These results indicate that local genomic cross-referencing by hybridization of orthologous clones can be an efficient and rapid technique for gene identification and studies of genome organization.  相似文献   

12.
Chinese pangolins as a representative species in the order Pholidota have highly specified morphological characters and occupy an important place in the mammalian phylogenetic tree. To obtain genomic data for this species, we have constructed a bacterial artificial chromosome (BAC) library of Chinese pangolin. The library contains 208,272 clones with an average insert size of 122.1 kb and represents approximately eight times the Chinese pangolin haploid genome (if we assume that the Chinese pangolins have a genome size similar to human). One hundred and twenty randomly-selected BAC clones were mapped onto Chinese pangolin chromosomes by fluorescence in situ hybridization (FISH), showing a largely unbiased chromosomal distribution. Several clones containing repetitive DNA and ribosomal DNA genes were also found. The BAC library and FISH mapped BAC clones are useful resources for comparative genomics and cytogenetics of mammals and in particular, the ongoing genome sequencing project of Chinese pangolins.  相似文献   

13.
Hartmann N  Scherthan H 《Chromosoma》2004,112(5):213-220
Tandem fusion, a rare evolutionary chromosome rearrangement, has occurred extensively in muntjac karyotypic evolution, leading to an extreme fusion karyotype of 6/7 (female/male) chromosomes in the Indian muntjac. These fusion chromosomes contain numerous ancestral chromosomal break and fusion points. Here, we designed a composite polymerase chain reaction (PCR) strategy which recovered DNA fragments that contained telomere and muntjac satellite DNA sequence repeats. Nested PCR confirmed the specificity of the products. Two-color fluorescence in situ hybridization (FISH) with the repetitive sequences obtained and T2AG3 telomere probes showed co-localization of satellite and telomere sequences in Indian muntjac chromosomes. Adjacent telomere and muntjac satellite sequences were also seen by fiber FISH. These data lend support to the involvement of telomere and GC-rich satellite DNA sequences during muntjac chromosome fusions.Communicated by E.A. NiggAccession numbers: AY322158, AY322159, AY322160  相似文献   

14.
We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.  相似文献   

15.
In order to realize the full potential of the medaka as a model system for developmental biology and genetics, characterized genomic resources need to be established, culminating in the sequence of the medaka genome. To facilitate the map-based cloning of genes underlying induced mutations and to provide templates for clone-based genomic sequencing, we have created a first-generation physical map of the medaka genome in bacterial artificial chromosome (BAC) clones. In particular, we exploited the synteny to the closely related genome of the pufferfish, Takifugu rubripes, by marker content mapping. As a first step, we clustered 103,144 public medaka EST sequences to obtain a set of 21,121 non-redundant sequence entities. Avoiding oversampling of gene-dense regions, 11,254 of EST clusters were successfully matched against the draft sequence of the fugu genome, and 2363 genes were selected for the BAC map project. We designed 35mer oligonucleotide probes from the selected genes and hybridized them against 64,500 BAC clones of strains Cab and Hd-rR, representing 14-fold coverage of the medaka genome. Our data set is further supplemented with 437 results generated from PCR-amplified inserts of medaka cDNA clones and BAC end-fragment markers. Our current, edited, first generation medaka BAC map consists of 902 map segments that cover about 74% of the medaka genome. The map contains 2721 markers. Of these, 2534 are from expressed sequences, equivalent to a non-redundant set of 2328 loci. The 934 markers (724 different) are anchored to the medaka genetic map. Thus, genetic map assignments provide immediate access to underlying clones and contigs, simplifying molecular access to candidate gene regions and their characterization.  相似文献   

16.
Du B  Zhang XF  Fang SG  Wang D 《Zoological science》2007,24(4):401-407
We constructed a genomic DNA library for Lipotes vexillifer (L. vexillifer), the Baiji or Yangtze River dolphin, one of the most endangered mammals in the world. The library consists of 149,000 BAC clones, with an average insert size of 83 kb, representing approximately 3.4 haploid genome equivalents. PCR amplification of four known L. vexillifer genes yielded two to four positive clones each. To demonstrate the utility of this library, we isolated and sequenced the L. vexillifer alpha lactalbumin gene, which is a gene specific to mammals and one which has been widely used as molecular tool in phylogenetic analysis. We also end-sequenced 20 randomly selected clones, resulting in the identification of at least five new L. vexillifer genes, five SSR loci, and one SINE locus. These results suggest that this library is a valuable resource for candidate gene cloning, physical mapping, and genome sequencing of this important and threatened species.  相似文献   

17.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

18.
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n = 6 in the female and 2n = 7 in the male. The karyotypic evolution of Indian muntjac via extensive tandem fusions and several centric fusions are well documented by molecular cytogenetic studies mainly utilizing chromosome paints. To achieve higher resolution mapping, a set of 42 different genomic clones coding for 37 genes and the nucleolar organizer region were used to examine homologies between the cattle (2n = 60), human (2n = 46), Indian muntjac (2n = 6/7) and Chinese muntjac (2n = 46) karyotypes. These genomic clones were mapped by fluorescence in situ hybridization (FISH). Localization of genes on all three pairs of M. m. vaginalis chromosomes and on the acrocentric chromosomes of M. reevesi allowed not only the analysis of the evolution of syntenic regions within the muntjac genus but also allowed a broader comparison of synteny with more distantly related species, such as cattle and human, to shed more light onto the evolving genome organization. For convenience and to avoid confusion we added for each species a three letter abbreviation prior to the chromosomal band location discussed in this paper: BTA, Cattle chromosome; HSA, Human chromosome; MMV, M. m. vaginalis chromosome; MRE, M. reevesi chromosome.  相似文献   

19.
近年来,分子细胞遗传学研究已基本证实了染色体的串联融合(端粒-着丝粒融合)是麂属动物核型演化的主要重排方式。尽管染色体串联融合的分子机制还不清楚,但通过染色体的非同源重组,着丝粒区域的卫星DNA被认为可能介导了染色体的融合。以前的研究发现在赤麂和小麂染色体的大部分假定的串联融合位点处存在着非随机分布的卫星DNA。然而在麂属的其他物种中,这些卫星DNA的组成以及在基因组中的分布情况尚未被研究。本研究从黑麂和费氏麂基因组中成功地克隆了4种卫星DNA(BMC5、BM700、BM1.1k和FM700),并分析了这些卫星克隆的特征以及在小麂、黑麂、贡山麂和费氏麂染色体上的定位情况。结果表明,卫星I和IIDNA(BMC5,BM700和FM700)的信号除了分布在这些麂属动物染色体的着丝粒区域外,也间隔地分布在这些物种的染色体臂上。其研究结果为黑麂、费氏麂和贡山麂的染色体核型也是从一个2n=70的共同祖先核型通过一系列的串联融合进化而来的假说提供了直接的证据。  相似文献   

20.
Summary The Bombyx fibroin gene has a discrete mosaic structure of various repetitive sequences, which may have evolved through various repeating arrangements. Detailed sequence analysis of the fibroin gene containing coding and noncoding regions revealed that the whole sequence could be arranged as an array of short repetitive sequences. A portion of the intron of the fibroin gene is one of interspersed repetitive elements. We cloned a 1.5-kb DNA fragment of the Bombyx genome that contains interspersed elements homologous to the intron sequence. Sequence comparison between the intron and the 1.5-kb fragment shows that partial duplication has frequently occurred in evolutionary progress, and the resultant repetitive blocks of short motif sequences are abundant in the genome. These facts suggest that tandem duplication of the short motif sequence is an important rearrangement in genomic evolution of the fibroin gene. Offprint requests to: S. Ichimura  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号