首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Sun D  Wang Y  Liu C  Zhou X  Li X  Xiao A 《Life sciences》2012,90(23-24):900-909
AimsIt is well recognized that microvascular injury is a major determinant of renal fibrosis. Mounting evidence shows that nitric oxide (NO) plays an important role in angiogenesis. Therefore, we investigated to the effects of NO on kidney angiogenesis and renal fibrosis.MethodsIn the present study, a unilateral ureteral obstruction (UUO) model was established with l-arginine (l-Arg, 1 g/dl) and N-nitro-l-arginine methyl ester (L-NAME, 5 mg/dl) serving as interference factors. We investigated the alteration of NO concentration with spectrophotometry, peritubular capillary (PTC) density with aminopeptidase P (JG12) immunohistochemical staining, and the expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) with immunohistochemical staining and Western blotting at weeks 2, 3 and 4.Key findingsOur findings showed that the expressions of VEGF, eNOS and PTC density were significantly decreased in rats with UUO, which was accompanied by a progressive increase in HIF-1α, TGF-β1 and an area of renal interstitial fibrosis. The administration of l-Arg promoted the synthesis of NO and significantly elevated the expressions of VEGF, eNOS and PTC density with the conspicuous loss of HIF-1α and TGF-β1 expressions and ultimately ameliorated renal fibrosis, which was markedly aggravated by L-NAME administration.SignificanceThese findings demonstrate that NO appears to play an important role in kidney angiogenesis and in slowing the progression of renal interstitial fibrosis, which suggests that NO may serve as a novel therapeutic strategy for preventing renal fibrosis as well as fibrosis in other organs.  相似文献   

2.
AimsThe present study investigated whether transplantation of bone marrow-derived endothelial progenitor cells (BM-EPCs) in renal capillary network improves renal interstitial fibrosis in unilateral ureteral obstruction (UUO) model in mice.Main methodsEx vivo generated, characterized, and cultivated mice BM-EPCs were identified by their vasculogenic properties in vitro. BM-EPCs were labelled with carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) before transplantation. The animal models of UUO were used. Histological changes in renal tubular interstitium were observed with HE and Masson staining. The protein levels of vascular endothelial growth factor(VEGF), hypoxia inducible factor-1α (HIF-1α) and connective tissue growth factor (CTGF) were analyzed by western blotting and immunohistochemistry. Transforming growth factor-β1 (TGF-β1) was detected by immunohistochemistry. Peritubular capillary (PTC) density was determined by CD31 immunostaining.Key findingsTransplanted BM-EPCs were successfully incorporated into the capillary network in the obstructed kidney in vivo. UUO induced a significant decrease in VEGF levels and PTC density in the kidney tissue, which was accompanied by a significant increase in HIF-1α, CTGF and TGF-β1. Transplantation of BM-EPCs increased PTC density, VEGF expression and alleviated the development of renal interstitial fibrosis in UUO mice. No significant pathological changes were found in control mice.SignificanceThe reduction of PTC density and up-regulation of HIF-1α are the important mechanisms of interstitial fibrosis in UUO mice. BM-EPCs transplantation may increase the number of capillary density and alleviate the development of renal fibrosis in obstructive nephropathy in mice.  相似文献   

3.
The interplay between H2S and nitric oxide (NO) is thought to contribute to renal functions. The current study was designed to assess the role of NO in mediating the renoprotective effects of hydrogen sulfide in the 5/6 nephrectomy (5/6 Nx) animal model. Forty rats were randomly assigned to 5 experimental groups: (a) Sham; (b) 5/6 Nx; (c) 5/6Nx+sodium hydrosulfide-a donor of H 2S, (5/6Nx+sodium hydrosulfide [NaHS]); (d) 5/6Nx+NaHS+ L -NAME (a nonspecific nitric oxide synthase [NOS] inhibitor); (e) 5/6Nx+NaHS+aminoguanidine (a selective inhibitor of inducible NOS [iNOS]). Twelve weeks after 5/6 Nx, we assessed the expressions of iNOS and endothelial NOS (eNOS), oxidative/antioxidant status, renal fibrosis, urine N-acetyl-b-glucosaminidase (NAG) activity as the markers of kidney injury and various markers of apoptosis, inflammation, remodeling, and autophagy. NaHS treatment protected the animals against chronic kidney injury as depicted by improved oxidative/antioxidant status, reduced apoptosis, and autophagy and attenuated messenger RNA (mRNA) expression of genes associated with inflammation, remodeling, and NAG activity. Eight weeks Nω-nitro-l-arginine methyl ester ( L -NAME) administration reduced the protective effects of hydrogen sulfide. In contrast, aminoguanidine augmented the beneficial effects of hydrogen sulfide. Our finding revealed some fascinating interactions between NO and H 2S in the kidney. Moreover, the study suggests that NO, in an isoform-dependent manner, can exert renoprotective effects in 5/6 Nx model of CKD.  相似文献   

4.
Sevoflurane, a common used inhaled anaesthetic, induces neuronal apoptosis in preclinical studies and correlates with functional neurological impairment. We investigated whether FTY720, a known sphingosine-1 phosphate (S1P) receptor agonist, could exert neuroprotective effect against sevoflurane-induced neurotoxicity. Neuroprotective effect of FTY720 was evaluated in vitro in hippocampal neuronal cells from neonatal rats and in vivo in rat pups. In vitro cell apoptosis was determined by flow cytometry after exposure to 3 % sevoflurane for different period of time, or after 6-h exposure to sevoflurane with the presence of FTY720, SEW2871 (selective S1P1 receptor agonist) or combination of FTY720 and VPC23019 (S1P antagonist). Western blot analysis was performed with hippocampal tissue from rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. Neurological function tests were also performed with rat pups exposed to 3 % sevoflurane for 6 h with or without pre-treatment with FTY720 injection. FTY720, at nanomolar concentration, significantly prevents sevoflurane-induced neuronal apoptosis. SEW2871 showed similar neuroprotective effect to FTY720, whereas VPC23019 abrogated the neuroprotective effect of FTY720 when given together. Western blots results demonstrated that FTY710 significantly preserved the level of phosphorylated ERK1/2, Bcl-2 and Bax. Although anaesthetic treatment did not affect general health and emotional status, sevoflurane-induced cognitive impairment in rat models. Administration of FTY720 at 1 mg/kg significantly attenuated sevoflurane-induced neurocognitive impairment. Although further studies are needed to evaluate the feasibility of clinical usage of FTY720 as neuroprotective agent, the study provides preclinical experimental evidence for the efficacy of FTY720 against sevoflurane-induced developmental neurotoxicity.  相似文献   

5.
Increased oxidative stress and inflammation have an important role in the pathophysiology of chronic kidney disease (CKD). On the other hand, more affordable therapeutic alternatives for treating this disease are urgently needed. Therefore, we compared the therapeutic efficacy of curcumin and mycophenolate mofetil (MMF) in 5/6 nephrectomy (5/6 Nx) model of CKD. Also, we evaluated whether both compounds provide benefit through the preservation of similar antioxidant mechanisms. Four groups of male Wistar were studied over a period of 4 wk. Control sham group (n=?12), 5/6 Nx (n?=?12), 5/6 Nx?+?MMF (30?mg/k BW/day, n?=?11) and 5/6 Nx?+?Curcumin (120?mg/k BW/day, n?=?12). Renal function and markers of oxidative stress and inflammation were evaluated. Also Nrf2-Keap1 and renal dopamine, antioxidant pathways were assessed. 5/6 Nx induced an altered renal autoregulation response, proteinuria, and hypertension; these effects were in association with increased oxidative stress, endothelial dysfunction and renal inflammation. The mechanisms associated with these alterations included a reduced nuclear translocation of Nrf2 and hyperphosphorylation of dopamine D1 receptor with a concurrent overactivation of renal NADPH oxidase. Treatments with MMF and curcumin provided equivalent therapeutic efficacy as both prevented functional renal alterations as well as preserved antioxidant capacity and avoided renal inflammatory infiltration. Moreover, both treatments preserved Nrf2-Keap1 and renal dopamine antioxidant pathways. In summary, therapeutic strategies aimed to preserve renal antioxidant pathways can help to retard the progression of CKD.  相似文献   

6.
Tubulointerstitial fibrosis is a common pathway of chronic kidney disease (CKD) and is closely related to the progression of CKD. LMCD1, acting as an intermediary, has been reported to play a role in cardiac fibrosis. However, its role in renal fibrosis is yet to be deciphered. Based on the GEO database, we found the expression of LMCD1 is increased in kidney tissues of CKD patients and in human proximal tubular epithelial (HK-2) cells treated with transforming growth factor-β1 (TGF-β1), suggesting that LMCD1 may be involved in tubulointerstitial fibrosis. Herein, we investigated the role of LMCD1 in mice with unilateral ureteral obstruction (UUO) and in TGF-β1-stimulated HK-2 cells. In the UUO model, the expression of LMCD1 was upregulated. UUO-induced renal histopathological changes were mitigated by knockdown of LMCD1. LMCD1 silence alleviated renal interstitial fibrosis in UUO mice by decreasing the expression of TGF-β1, fibronectin, collagen I, and collagen III. LMCD1 deficiency suppressed cell apoptosis in kidney to prevent UUO-triggered renal injury. Furthermore, LMCD1 deficiency blocked the activation of ERK signaling in UUO mice. In vitro, LMCD1 was upregulated in HK-2 cells after TGF-β1 stimulation. LMCD1 silence abrogated TGF-β1-mediated upregulation of fibrotic genes. Treatment of HK-2 cells with ERK-specific inhibitor SCH772984 and agonist TPA validated LMCD1 exerted its function via activating ERK signaling. Together, our findings suggest that inhibition of LMCD1 protects against renal interstitial fibrosis by impeding ERK activation.  相似文献   

7.
BackgroundIn chronic kidney disease, although fibrosis prevention is beneficial, few interventions are available that specifically target fibrogenesis. Poricoic acid A (PAA) isolated from Poria cocos exhibits anti-fibrotic effects in the kidney, however the underlying mechanisms remain obscure.PurposeWe isolated PAA and investigated its effects and the underlying mechanisms in renal fibrosis.Study designUnilateral ureteral obstruction (UUO) and 5/6 nephrectomy (Nx) animal models and TGF-β1-induced renal fibroblasts (NRK-49F) were used to investigate the anti-fibrotic activity of PAA and its underlying mechanisms.MethodsWestern blots, qRT-PCR, immunofluorescence staining, co-immunoprecipitation and molecular docking methods were used. Knock-down and knock-in of adenosine monophosphate-activated protein kinase (AMPK) in the UUO model and cultured NRK-49F cells were employed to verify the mechanisms of action of PAA.ResultsPAA improved renal function and alleviated fibrosis by stimulating AMPK and inhibiting Smad3 specifically in Nx and UUO models. Reduced AMPK activity was associated with Smad3 induction, fibroblast activation, and the accumulation and aberrant remodelling of extracellular matrix (ECM) in human renal puncture samples and cultured NRK-49F cells. PAA stimulated AMPK activity and decreased fibrosis in a dose-dependent manner, thus showing that AMPK was essential for PAA to exert its anti-fibrotic effects. AMPK deficiency reduced the anti-fibrotic effects of PAA, while AMPK overexpression enhanced its effect.ConclusionPAA activated AMPK and further inhibited Smad3 specifically to suppress fibrosis by preventing aberrant ECM accumulation and remodelling and facilitating the deactivation of fibroblasts.  相似文献   

8.
Renal expression of the klotho gene is markedly suppressed in chronic kidney disease (CKD). Since renal fibrosis is the final common pathology of CKD, we tested whether decreased Klotho expression is a cause and/or a result of renal fibrosis in mice and cultured renal cell lines. We induced renal fibrosis by unilateral ureteral obstruction (UUO) in mice with reduced Klotho expression (kl/+ mice) and compared them with wild-type mice. The UUO kidneys from kl/+ mice expressed significantly higher levels of fibrosis markers such as α-smooth muscle actin (α-SMA), fibronectin, and transforming growth factor-β(1) (TGF-β(1)) than those from wild-type mice. In addition, in cultured renal fibroblast cells (NRK49F), the levels of α-SMA and PAI1 expression were significantly suppressed by addition of recombinant Klotho protein to the medium. The similar effects were observed by a TGF-β(1) receptor inhibitor (ALK5 inhibitor). These observations suggest that low renal Klotho expression enhances TGF-β(1) activity and is a cause of renal fibrosis. On the other hand, TGF-β(1) reduced Klotho expression in renal cultured epithelial cells (inner medullary collecting duct and human renal proximal tubular epithelium), suggesting that low renal Klotho expression is a result of renal fibrosis. Taken together, renal fibrosis can trigger a deterioration spiral of Klotho expression, which may be involved in the pathophysiology of CKD progression.  相似文献   

9.
FTY720, a potent immunosuppressive agent, is phosphorylated in vivo into FTY720-P, a high affinity agonist for sphingosine 1-phosphate (S1P) receptors. The effects of FTY720 on vascular cells, a major target of S1P action, have not been addressed. We now report the metabolic activation of FTY720 by sphingosine kinase-2 and potent activation of vascular endothelial cell functions in vitro and in vivo by phosphorylated FTY720 (FTY720-P). Incubation of endothelial cells with FTY720 resulted in phosphorylation by sphingosine kinase activity and formation of FTY720-P. Sphingosine kinase-2 effectively phosphorylated FTY720 in the human embryonic kidney 293T heterologous expression system. FTY720-P treatment of endothelial cells stimulated extracellular signal-activated kinase and Akt phosphorylation and adherens junction assembly and promoted cell survival. The effects of FTY720-P were inhibited by pertussis toxin, suggesting the requirement for Gi-coupled S1P receptors. Indeed, transmonolayer permeability induced by vascular endothelial cell growth factor was potently reversed by FTY720-P. Furthermore, oral FTY720 administration in mice potently blocked VEGF-induced vascular permeability in vivo. These findings suggest that FTY720 or its analogs may find utility in the therapeutic regulation of vascular permeability, an important process in angiogenesis, inflammation, and pathological conditions such as sepsis, hypoxia, and solid tumor growth.  相似文献   

10.
11.
12.
The role of podocytes in the development and progression of glomerular disease has been extensively investigated in the past decade. However, the importance of glomerular endothelial cells in the pathogenesis of proteinuria and glomerulosclerosis has been largely ignored. Recent studies have demonstrated that endothelial nitric oxide synthatase (eNOS) deficiency exacerbates renal injury in anti-GBM and remnant kidney models and accelerates diabetic kidney damage. Increasing evidence also demonstrates the importance of the glomerular endothelium in preventing proteinuria. We hypothesize that endothelial dysfunction can initiate and promote the development and progression of glomerulopathy. Administration of adriamycin (ADR) to C57BL/6 mice, normally an ADR resistant strain, with an eNOS deficiency induced overt proteinuria, severe glomerulosclerosis, interstitial fibrosis and inflammation. We also examined glomerular endothelial cell and podocyte injury in ADR-induced nephropathy in Balb/c mice, an ADR susceptible strain, by immunostaining, TUNEL and Western blotting. Interestingly, down-regulation of eNOS and the appearance of apoptotic glomerular endothelial cells occurred as early as 24 hours after ADR injection, whilst synaptopodin, a functional podocyte marker, was reduced 7 days after ADR injection and coincided with a significant increase in the number of apoptotic podocytes. Furthermore, conditioned media from mouse microvascular endothelial cells over-expressing GFP-eNOS protected podocytes from TNF-α-induced loss of synaptopodin. In conclusion, our study demonstrated that endothelial dysfunction and damage precedes podocyte injury in ADR-induced nephropathy. Glomerular endothelial cells may protect podocytes from inflammatory insult. Understanding the role of glomerular endothelial dysfunction in the development of kidney disease will facilitate in the design of novel strategies to treat kidney disease.  相似文献   

13.
FTY720, a sphingosine 1-phosphate (S1P) analog, acts as an immunosuppressant through trapping of T cells in secondary lymphoid tissues. FTY720 was also shown to prevent tumor growth and to inhibit vascular permeability. The MTT proliferation assay illustrated that endothelial cells are more susceptible to the anti-proliferative effect of FTY720 than Lewis lung carcinoma (LLC1) cells. In a spheroid angiogenesis model, FTY720 potently inhibited the sprouting activity of VEGF-A-stimulated endothelial cells even at concentrations that apparently had no anti-proliferative effect. Mechanistically, the anti-angiogenic effect of the general S1P receptor agonist FTY720 was mimicked by the specific S1P1 receptor agonist SEW2871. Moreover, the anti-angiogenic effect of FTY720 was abrogated in the presence of CXCR4-neutralizing antibodies. This indicates that the effect was at least in part mediated by the S1P1 receptor and involved transactivation of the CXCR4 chemokine receptor. Additionally, we could illustrate in a coculture spheroid model, employing endothelial and smooth muscle cells (SMCs), that the latter confer a strong protective effect regarding the action of FTY720 upon the endothelial cells. In a subcutaneous LLC1 tumor model, the anti-angiogenic capacity translated into a reduced tumor size in syngeneic C57BL/6 mice. Consistently, in the Matrigel plug in vivo assay, 10 mg/kg/d FTY720 resulted in a strong inhibition of angiogenesis as demonstrated by a reduced capillary density. Thus, in organ transplant patients, FTY720 may prove efficacious in preventing graft rejection as well as tumor development.  相似文献   

14.

Aim

To investigate the effects of rhubarb enema treatment using a 5/6 nephrectomized rat model and study its mechanisms.

Methods

Twenty-eight Sprague Dawley rats were divided into three groups: sham operation group (n = 8), 5/6 nephrectomized (5/6Nx) (n = 10), and 5/6Nx with rhubarb enema treatment (n = 10). The rhubarb enema was continuous for 1.0 month. Serum creatinine, serum indoxyl sulfate (IS) level, renal pathology, tubulointerstitial fibrosis, and renal oxidative stress were assessed.

Results

5/6Nx rats showed increasing levels of serum creatinine and severe pathological lesions. Their serum creatinine levels obviously decreased after rhubarb enema treatment (P < 0.05 vs 5/6Nx group). The administration of rhubarb enema attenuated the histopathological changes in 5/6Nx rats. In addition, 5/6Nx rats showed an enhanced extent of tubulointerstitial fibrosis compared with sham rats, and administration of rhubarb enema to 5/6Nx rats ameliorated tubulointerstitial fibrosis. 5/6Nx rats showed increased serum levels of IS, renal oxidative stress, and NF-κB compared with sham rats, whereas administration of rhubarb enema to 5/6Nx rats decreased serum levels of IS, renal oxidative stress, and NF-κB levels.

Conclusion

Rhubarb enema treatment ameliorates tubulointerstitial fibrosis in the kidneys of 5/6Nx rats, most likely by alleviating IS overload and reducing kidney oxidative stress and inflammatory injury.  相似文献   

15.
Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.  相似文献   

16.
Epithelial–mesenchymal transition (EMT) of tubular epithelial cells is a key event in renal interstitial fibrosis and the progression of chronic kidney disease (CKD). Apelin is a regulatory peptide involved in the regulation of normal renal hemodynamics and tubular functions, but its role in renal fibrosis remains unknown. In this study, we examined the inhibitory effects of apelin on transforming growth factor-β1 (TGF-β1)-induced EMT in HK-2 cells, and evaluated its therapeutic efficacy in mice with complete unilateral ureteral obstruction (UUO). In vitro, apelin inhibited TGF-β1-mediated upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin. Increased levels of phosphorylated Smad-2/3 and decreased levels of Smad7 in TGF-β1-stimulated cells were reversed by apelin co-treatment. In the UUO model, administration of apelin significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin and laminin expression, and markedly suppressed expression of α-SMA, TGF-β1 and its type I receptor, as well as interstitial matrix components. Interestingly, in UUO mice, there was a reduction in the plasma level of apelin, which was compensated by upregulation of APJ expression in the injured kidney. Exogenous supplementation of apelin normalized the level of plasmatic apelin and renal APJ. In conclusion, our study provides the first evidence that apelin is able to ameliorate renal interstitial fibrosis by suppression of tubular EMT through a Smad-dependent mechanism. The apelinergic system itself may promote some compensatory response in the renal fibrotic process. These results suggest that apelin has potential renoprotective effects and may be an effective agent for retarding CKD progression.  相似文献   

17.
Both NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS) are the main sources of reactive oxygen species in kidney. However, their interactions in oxidative stress and contributions to kidney fibrosis during diabetic nephropathy have not been studied. Human mesangial cells were treated with normal glucose (5.6 mmol/L), high glucose (30 mmol/L) in the presence or absence of AGE (200 mg/L). Protein expressions of NOX1, NOX2, NOX4, and iNOS were examined by immunoblotting. NOX was genetically silenced with specific RNAi to study the interactions between NOX and iNOS in diabetic milieu. Superoxide (O·?) and peroxynitrite (ONOO·?) productions were assessed by dihydroethidium and hydroxyphenyl fluorescein, respectively. Fibrotic factors were determined by biochemistry assay. Superoxide, peroxynitrite, TGF-β, and fibronectin productions as well as the protein expressions of NOX1, NOX2, NOX4, and iNOS were increased in the diabetic milieu (high glucose 30 mmol/L plus AGE 200 mg/L). However, abolishment of iNOS induction with 1400W or iNOS RNAi would restore peroxynitrite, TGF-β, and fibronectin productions completely to basal level and attenuate superoxide production. Moreover, NOX1 inhibition not only prevented iNOS induction but also abrogated changes consequent to iNOS induction such as mesangial fibrogenesis.  相似文献   

18.
19.
Renal fibrosis is a common pathway for the progression of all chronic kidney diseases to end-stage kidney disease. Studies show that WNT1-inducible signaling pathway protein-1 (WISP-1) is involved in the fibrosis of various organs. The aim of the study was to explore the functional role and potential mechanism of WISP-1 in renal fibrosis. We observed that overexpression of WISP-1 in rat tubular epithelial cells (TECs) enhanced transforming growth factor-β1 (TGF-β1)-induced production of fibrotic markers, including collagen I (Col I), fibronectin (FN) and TGF-β1, while inhibition of WISP-1 suppressed such production. In vivo, the messenger RNA and protein levels of Col I, FN, and α-smooth muscle actin were significantly inhibited after anti-WISP-1 antibody treatment for 7 days in unilateral ureteral obstruction mouse models. Moreover, blockade of WISP-1 by anti-WISP-1 antibody significantly reduced autophagy-related markers, including anti-microtubule-associated protein-1 light chain 3 (LC3) and beclin 1, while increasing sequestosome 1. In addition, overexpression of WISP-1 in TECs increased autophagy as evidenced by greater numbers of GFP-LC3 puncta and increased expression of LC3 and beclin 1 in response to TGF-β1. In contrast, knockdown of WISP-1 by small interfering RNA decreased the number of GFP-LC3 puncta and the expression of LC3 and beclin 1 in TGF-β1-treated TECs. Collectively, these data suggest that WISP-1, as a profibrotic protein, may mediate renal fibrosis by inducing autophagy in both obstructive nephropathy and TGF-β1-treated TECs. WISP-1 may serve as an effective therapeutic target for the treatment of renal fibrosis.  相似文献   

20.
Z Yin  L Fan  L Wei  H Gao  R Zhang  L Tao  F Cao  H Wang 《PloS one》2012,7(8):e42900
Background: Diabetes is associated with an increased risk of cardiac microvascular disease. The mechanisms by which this damage occurs are unknown. However, research suggests that signaling through the sphingosine-1-phosphates receptor 1 and 3 (S1P1/3) by FTY720, a sphiongolipid drug that is structually similar to SIP, may play a role in the treatment on cardiac microvascular dysfunction in diabetes. We hypothesized that FTY720 might exert the cardioprotective effects of S1P1 and S1P3 viaprotein kinase C-beta (PKCβ II) signaling pathway.Methodology/Principal Findings: Transthoracic echocardiography was performed to detect the change of cardiac function. Scanning and transmission electron microscope with lanthanum tracer were used to determine microvascular ultrastructure and permeability in vivo. Apoptosis was detected by TUNEL and CD31 dual labeling in paraffin-embedded sections. Laser capture miscrodissection was used to assess cardiac micovascular endothelial cells (CMECs) in vivo. RT-PCR and Western blot analysis were used to determine the mRNA levels and protein expression of S1P1, S1P3, and PKCβ II. In the diabetic rats vs. controls, cardiac capillaries showed significantly higher density; CD31 positive endothelial cells were significantly reduced; the apoptosis index of cardiac endothlial cells was significantly higher. And FTY720 could increase the expressional level of S1P1 and boost S1P3 trasnslocation from membrane to nuclear, then ameliorate cardiac microvascular barrier impairment and pathologic angiogenesis induced by diabetes. In addition, overexpression of PKCβ II significantly decreased the protective effect of FTY720.Conclusions: Our study represents that the deregulation of S1P1 and S1P3 is an important signalresponsible for cardiac microvascular dysfunction in diabetes. FTY720 might be competent to serve as a potential therapeutic approach for diabetic heart disease through ameliorating cardiac microvascular barrier impairment and pathologic angiogenesis, which might be partly dependent on PKCβII-mediated signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号