首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An activated sludge plant was established which was capable of treating an influent containing morpholine. When this compound was deleted from the influent the ability of the activated sludge to degrade morpholine was reduced. This reduction took the form of an increase in the length of the lag period before morpholine degradation was detected in a die-away test from 0 to ca 1000 h. The decreased ability of the activated sludge to degrade morpholine was accounted for by a decline in the specific population of morpholine-degrading microbes. In this activated sludge all morpholine degraders were Mycobacterium spp. In the absence of morpholine in the influent most mycobacteria in the activated sludge retained their morpholine-degrading phenotypes. This is despite the fact that some of these organisms can lose this phenotype when grown under non-selective conditions. These results are discussed in relation to other work on the degradation of morpholine and to problems in the treatment of xenobiotic compounds in industrial effluents.  相似文献   

2.
A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.  相似文献   

3.
The ability of Gram-negative bacteria to degrade morpholine when growing in pure culture is reported for the first time. Several bacterial strains were able to degrade morpholine and to utilize it as a sole nitrogen source but not as a sole carbon and energy source. The organisms studied were obtained from river water and activated sludge and could not be isolated directly on morpholine-containing media which always yielded growth of Gram-positive bacteria using morpholine as a carbon and energy source. The Gram-negative strains were isolated on the basis of their ability to grow on the structurally-related heterocyclc amines piperidine and pyrrolidine.  相似文献   

4.
A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring.  相似文献   

5.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

6.
In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.  相似文献   

7.
活性污泥法随着技术的成熟,已应用在高氨氮污水/废水处理中,通过不断发展衍生出的很多新型工艺也成为研究热点,短程硝化反应作为代表已逐渐体现出优越性。短程硝化能达到高效净化污水的目的,其反应中的代谢产物羟胺也和微生物类群及反应产物之间有着至关重要的影响。反应器中活性污泥的微生物群落结构和动态密切相关,探究微生物群落结构能帮助生物强化、优化参数,提高脱氮效率。本文主要总结了近年来有关短程硝化/半短程硝化活性污泥微生物群落组成与结构及其与反应器处理效率之间的关系,以及羟胺代谢对短程硝化的影响等方面的研究进展,这些研究加深了对微生物群落结构和污水处理工艺之间的认识,但充分发掘生物信息、提高工艺效能之路仍然充满挑战,还需利用氮平衡方法、Real-time PCR法等多种生物技术手段对短程硝化进行全方位研究,为实践提供坚实的理论基础。  相似文献   

8.
The goal of this research was to investigate the simultaneous occurrence of nitrification and denitrification by activated sludge exposed to volatile fatty acids (VFAs) during aerobic wastewater treatment using a single-stage reactor. A mixture of VFAs was spiked directly into a continuous-stirred tank reactor (CSTR) to assess subsequent impacts on nitrite removal, nitrate formation, CO(2) fixation, total bacterial density, and dominant nitrite oxidizing bacteria (NOB) concentration (i.e., Nitrospira). The activity of the periplasmic nitrate reductase (NAP) enzyme and the presence of nap gene were also measured. A rapid decrease in the nitrate formation rate (>70% reduction) was measured for activated sludge exposed to VFAs; however, the nitrite removal rate was not reduced. The total bacterial density and Nitrospira concentration remained essentially constant; therefore, the reduction in nitrate formation rate was likely not due to heterotrophic uptake of nitrogen or to a decrease in the dominant NOB population. Additionally, VFA exposure did not impact microbial CO(2) fixation efficiency. The activity of NAP enzyme increased in the presence of VFAs suggesting that nitrate produced as a consequence of nitrite oxidation was likely further reduced to gaseous denitrification products via catalysis by NAP. Little, if any, nitrogen was discharged in the aqueous effluent of the CSTR after exposure to VFAs demonstrating that activated sludge treatment yielded compounds other than those typically produced solely by nitrification.  相似文献   

9.
Complete oxidation of ammonia nitrogen (approximately 1000 mg/L) to nitrite was observed in stabilized swine waste after 49 days in incubation at 400 rpm and 29 degrees C, only if 10% (v/v) activated sludge from a wastewater treatment unit and 1.5% (w/v) CaCO3, were added. Stabilized swine waste contains less than 0.09 most probable number (MPN) per millilitre of nitrosobacteria and 2.3 MPN/mL of nitrobacteria. In activated sludge, the concentrations of these bacteria were 2.4 MPN/mL for nitrosobacteria and 4.2 x 10(5) MPN/mL for nitrobacteria. In the swine waste where ammonia was oxidized to nitrite, the nitrosobacteria growth increased to 5.5 x 10(5) MPN/mL, while the nitrobacteria growth decreased to 2.3 MPN/mL. Inoculation of a freshly stabilized swine waste with 10% (v/v) of the active nitrifying waste and addition of 1.5% (w/v) CaCO3, accelerated the oxidation of ammonia nitrogen to nitrite; the reaction was completed after only 5 days of incubation. Increasing the incubation period to 10 days resulted in the complete oxidation of the accumulated nitrite to nitrate. In the stabilized swine waste, complete nitrification without accumulation of nitrite was obtained in only 5 days of incubation when the waste was inoculated with both enriched nitrifying populations (10(6)-10(7) MPN/mL).  相似文献   

10.
Aerobic granular sludge is a new type of microbe auto-immobilization technology; in this paper, short-cut nitrification and denitrification were effectively combined with the granular sludge technology. Simultaneous nitrification and denitrification granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater with a high concentration of ammonia nitrogen at 25 °C with a dissolved oxygen concentration above 2.0 mg/L and a 15 days sludge retention time. The characteristics of the sludge and the removal efficiency were studied, and the removal mechanisms of the pollutants and the process of short-cut nitrification were analyzed. The average granule diameter of the granular sludge was 704.0 μm. The removal rates of pollutants and the accumulation rate of nitrite in the SBR were studied. During treatment of wastewater with a high concentration of ammonia nitrogen, simultaneous nitrification, and denitrification and the stripping process could contribute to the removal of total nitrogen. The high pH value, the high concentration of free ammonia, and the delamination of granular sludge were the main factors contributing to the short-cut nitrification property of granular sludge in the reaction process.  相似文献   

11.
The on-line estimation of the maximum specific growth rate of autotrophic biomass is addressed in this article. A general nitrification process model, which is valid for any realistic flow pattern, is used to develop the estimation algorithm. Depending on the measurements available, two estimation equations are derived. While both require measuring the nitrification activity of the activated sludge, one requires the additional measurement of the nitrifiable nitrogen concentrations at the two ends of the bioreactor, and the other requires the nitrate nitrogen concentrations at the same locations. The algorithm also requires some stoichiometric and kinetic parameters. However, sensitivity analysis shows that the estimate is insensitive to the parameters other than the autotrophic decay rate. Compared to the existing algorithms, the algorithm developed in this article does not rely on the assumption of ideal flow pattern in the plant and does not require an error-prone estimate of the autotrophic biomass concentration. Experimental and simulation studies show that the algorithm performs well and is robust to influent variations and accidental sludge losses.  相似文献   

12.
湖泊氮素氧化及脱氮过程研究进展   总被引:7,自引:0,他引:7  
范俊楠  赵建伟  朱端卫 《生态学报》2012,32(15):4924-4931
自然界中氮的生物地球化学循环主要由微生物驱动,由固氮作用、硝化作用、反硝化作用和氨化作用来完成。过去数十年间,随着异养硝化、厌氧氨氧化和古菌氨氧化作用的发现,人们对环境中氮素循环认识逐步深入,提出了多种脱氮途径新假说。对湖泊生态系统中氮素的输入、输出及其在水体、沉积物和水土界面的迁移转化过程进行了概括,对湖泊生态系统中反硝化和厌氧氨氧化脱氮机理及脱氮效率的最新研究进展进行了探讨,并对以后的氮素循环研究进行了展望。  相似文献   

13.
Two approaches based on ne w process development and biological nitrogen transformation were investigated in a bench study for removing nitrogen as N2 gas from poultry waste while stabilizing the wastes. The process, known as "Anammox", was explored in batch anaerobic culture using serum bottles. The Anammox process involves the use of nitrite as an electron acceptor in the bacterially mediated oxidation of ammonia to yield N2. Studies are described wherein nitrite was added to poultry waste and the effects on ammonium levels were monitored. About 13-22% ammonium removal was observed with the inoculation of returned activated sludge, and the total ammonium reduction was not proportional to the reduction of nitrite, thereby suggesting that Anammox was less competitive under the conditions in our studies. The addition of nitrite and nitrate was not inhibitory to the process based on gas generation and COD reduction. The classical nitrogen removal process of nitrification followed with denitrification offers a more reliable basis for nitrogen removal from poultry wastes.  相似文献   

14.
The effectiveness of bioaugmentation in the improvement of the start-up of a biofilm airlift reactor to perform partial nitrification was investigated. Two identical biofilm airlift reactors were inoculated. The non-bioaugmented reactor (NB-reactor) was inoculated with conventional activated sludge, whereas the bioaugmented reactor (B-reactor) was seeded with the same conventional activated sludge but bioaugmented with nitrifying activated sludge from a pilot plant performing full nitritation under stable conditions (100% oxidation of influent ammonium to nitrite). The fraction of specialized nitrifying activated sludge in the inoculum of the B-reactor was only 6% (measured as dry matter). To simplify comparison of the results, operational parameters were equivalent for both reactors. Partial nitrification was achieved significantly faster in the B-reactor, showing a very stable operation. The results obtained by fluorescence in situ hybridization assays showed that the specialized nitrifying biomass added to the B-reactor remained in the biofilm throughout the start-up period.  相似文献   

15.
Oxidation of oxyhemoglobin by nitrite is characterized by a lag period followed by an autocatalytic phase. The oxidation can be inhibited by the addition of morpholine, piperidine, triethanolamine or triethylamine (6 mM each). These amines are known to react with nitrogen dioxide to yield nitrosamine. Unexpectedly, aniline or aminopyrine (120 microM each) markedly inhibited the oxidation. These compounds, but not the other amines given above, inhibited the peroxide compound formation from methemoglobin and hydrogen peroxide. The results establish that, during the oxidation, the peroxide compound is generated and converts nitrite into nitrogen dioxide by its peroxidatic activity, resulting in an autocatalytic phase.  相似文献   

16.
The removal of nitrogen from industrial wastewaters carrying about 1,000 mg NH4-N and urea-N/l was investigated on a laboratory scale. The use of a three-step nitryfying activated sludge with adjustment of pH from step to step resulted in 99% oxidation of both forms of nitrogen to nitrites. The efficiency of nitrification was 18 mg N/l/h. Total time of wastewater aeration depended on nitrogen concentration and was 33-54 hours. Complete dentrification of NO2-N was obtained in packed-bed reactor with the use of acetic acid as a carbon source. Efficiency of denitrification was 361 mg N/l/h.  相似文献   

17.
厌氧氨氧化工艺的应用现状和问题   总被引:4,自引:0,他引:4  
厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。预计到2014年末,全球范围内的ANAMMOX工程将会超过100座。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。  相似文献   

18.
In this study, the ammonia removal efficiency for high ammonia-containing wastewaters was evaluated via partial nitrification. A nitrifier biocommunity was first enriched in a fill-and-draw batch reactor with a specific ammonium oxidation rate of 0.1 mg NH4 -N/mg VSS.h. Partial nitrification was established in a chemostat at a hydraulic retention time (HRT) of 1.15 days, which was equal to the sludge retention time (SRT). The results showed that the critical HRT (SRT) was 1.0 day for the system. A maximum specific ammonium oxidation rate was achieved as 0.280 mg NH4 -N/mg VSS.h, which is 2.8-fold higher than that obtained in the fill-and-draw reactor, indicating that more adaptive and highly active ammonium oxidizers were enriched in the chemostat. Dynamic modeling of partial nitrification showed that the maximum growth rate for ammonium oxidizers was found to be 1.22 day−1. Modeling studies also validated the recovery period as 10 days.  相似文献   

19.
Liu YQ  Wu WW  Tay JH  Wang JL 《Bioresource technology》2008,99(9):3919-3922
The formation and long-term stability of nitrifying granules in a sequencing batch reactor was investigated in this study. The results showed that nitrifying granules with a size of 240 microm and SVI of 40 ml g(-1) were formed on day 21 at a settling time of 10 min. Maintaining settling time at 15 min from day 57 to 183 did not affect the physical characteristics of sludge and the fraction of suspended floc in the sludge. In addition, nitrifying granules could tolerate the fluctuations of nitrogen loading rate from 0.72 to 1.8 g l(-1)d(-1) during 2 months without the change of physical characteristics. However, it was observed that complete nitrification to nitrate and partial nitrification to nitrite by sludge converted each other corresponding to the change of the influent NH4+-N concentration. Thus, an appropriate method is needed to maintain a stable complete nitrification or partial nitrification under the conditions with changing influent NH4+-N concentrations and nitrogen loading rates.  相似文献   

20.
Autotrophic ammonia oxidation at low pH through urea hydrolysis.   总被引:1,自引:0,他引:1  
Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号