首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of copper(II) and zinc(II) to oxidized glutathione   总被引:1,自引:0,他引:1  
1H and 13C NMR studies of Zn(II) binding to oxidized glutathione (GSSG) in aqueous solution over the pH range 4-11 show that it forms a complex with a 1:1 Zn:GSSG stoichiometry. At pH values between 6 and 11 the metal ligands are the COO- and NH2 groups of the glutamate residues. Below pH 5 the glycine end of the molecule also binds to the metal ions. EPR and visible absorption spectra of Cu(II) GSSG solutions suggest that similar complexes are formed with Cu(II). The solid products obtained from these solutions are shown by analysis and EPR to be primarily binuclear with Cu2GSSG stoichiometry, although the structures depend on the pH and stoichiometry of the solution from which they were obtained.  相似文献   

2.
Adsorption of mercury(II) by an extracellular biopolymer, poly(gamma-glutamic acid) (gamma-PGA), was studied as a function of pH, temperature, agitation time, ionic strength, light and heavy metal ions. An appreciable adsorption occurred at pH>3 and reached a maximum at pH 6. Isotherms were well predicted by Redlich-Peterson model with a dominating Freundlich behavior, implying the heterogeneous nature of mercury(II) adsorption. The adsorption followed an exothermic and spontaneous process with increased orderliness at solid/solution interface. The adsorption was rapid with 90% being attained within 5 min for a 80 mg/L mercury(II) solution, and the kinetic data were precisely described by pseudo second order model. Ionic strength due to added sodium salts reduced the mercury(II) binding with the coordinating ligands following the order: Cl(-) >SO(4)(2-) >NO(3)(-). Both light and heavy metal ions decreased mercury(II) binding by gamma-PGA, with calcium(II) ions showing a more pronounced effect than monovalent sodium and potassium ions, while the interfering heavy metal ions followed the order: Cu(2+) > Cd(2+) > Zn(2+). Distilled water adjusted to pH 2 using hydrochloric acid recovered 98.8% of mercury(II), and gamma-PGA reuse for five cycles of operation showed a loss of only 6.5%. IR spectra of gamma-PGA and Hg(II)-gamma-PGA revealed binding of mercury(II) with carboxylate and amide groups on gamma-PGA.  相似文献   

3.
In this work we present the synthesis and structural and spectroscopic characterization of Cu(II), Co(II) and Zn(II) coordination compounds with the antibiotic metronidazole ([double bond]emni). Coordination to metal ions is through its imidazolic nitrogen, while the hydroxyethyl and nitro groups act as supramolecular synthons. [Co(emni)(2)Br(2)], and [Zn(emni)(2)X(2)] (X(-)=Cl, Br) stabilize zig-zag chains, and a 2D supramolecular structure is formed by inter-chain contacts through inter-molecular hydrogen-bonding. Pleated sheet or layers are formed by [Co(emni)(2)Cl(2)] and [Cu(emni)(2)Cl(H(2)O)](2)Cl(2), respectively. The dinuclear Cu(II) compound [Cu(emni)mu(O(2)CMe)(2)](2) gives a one-dimensional zig-zag arrangement. The contribution of metal ions in metronidazole coordination compounds is shown in the stabilization of the different aggregate structures.  相似文献   

4.
In vitro interactions among phytic acid (PA), Cu(II) ions, and Ca(II) ions were examined as functions of PA:Cu(II):Ca(II) molar ratios and pH. Ca(II) ions competed with Cu(II) ions for binding by the soluble phytate species for PA:Cu(II) molar ratios ranging from 10:1 to 1:6 and pH values in the 2.4-5.9 range. At pH values where precipitation occurred, Ca(II) ions potentiated Cu(II) ion binding by the precipitated phytate species for PA:Cu(II) molar ratios of 10:1 to 1:3. At lower PA:Cu(II) molar ratios, Ca(II) ions competed with Cu(II) ions for binding by the precipitated phytate species. Compositions of the precipitated copper-calcium phytates are reported.  相似文献   

5.
A speciation study was carried out in aqueous solution of the anti-inflammatory drug tenoxicam (Htenox), under quasi-physiological conditions (temperature of 37 degrees C and ionic strength 0.15 M NaCl) in order to determine the acidity constants from spectrophotometric studies, the pK(a) values found being pK(1)=1.143+/-0.008 and pK(2)=4.970+/-0.004. Subsequently, the spectrophotometrical speciation of the different complexes of Cu(II) with the drug was performed under the same conditions of temperature and ionic strength, observing the formation of Cu(Htenox)(2)(2+) with log beta(212)=20.05+/-0.01, Cu(tenox)(2) with log beta(012)=13.6+/-0.1, Cu(Htenox)(2+) with log beta(111)=10.52+/-0.08, as well as Cu(tenox)(+) with log beta(011)=7.0+/-0.2, all of them in solution, and solid species Cu(tenox)(2)(s) with an estimated value of log beta(012)(s) approximately 18.7. The crystalline structure of the complex [Cu(tenox)(2)(py)(2)]. EtOH, was also determined, and it was observed that tenoxicam employs the oxygen of the amide group and the pyridyl nitrogen to bond to the cation.  相似文献   

6.
Although metal ions can promote amyloid formation from many proteins, their effects on the formation of amyloid from transthyretin have not been previously studied. We therefore screened the effects of Cu(II), Zn(II), Al(III), and Fe(III) on amyloid formation from wild-type (WT) transthyretin as well as its V30M, L55P, and T119M mutants. Cu(II) and Zn(II) promoted amyloid formation from the L55P mutant of transthyretin at pH 6.5 but had little effect on amyloid formation from the other forms of the protein. Zn(II) promoted L55P amyloid formation at pH 7.4 but Cu(II) inhibited it. Cu(II) gave dose-dependent quenching of the tryptophan fluorescence of transthyretin and the fluorescence of 1-anilino-8-naphthalene sulfonate bound to it. Zn(II) gave dose-dependent quenching of the tryptophan but not the 1-anilino-8-naphthalene sulfonate fluorescence. Apparent dissociation constants for Cu(II) and Zn(II) binding at pH 7.4 of approximately 10 nM and approximately 1 microM (approximately 0.4 microM and approximately 5 microM at pH 6.5), respectively, were obtained from the quenching data. Zn(II) enhanced urea-mediated the dissociation of the L55P but not the WT transthyretin tetramer. Cu(II), depending on its concentration, either had no effect or stabilized the WT tetramer but could enhance urea-mediated dissociation of L55P.  相似文献   

7.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

8.
The antitumor antibiotic Altromycin H was studied using electronic absorption (UV-Vis.) and circular dichroism (CD) spectroscopy. The dissociation constants of the phenolic groups on C(5) and C(11) were estimated as pK(1)=6.7 and pK(2)=11.8 at 25 degrees C, respectively, and a complete assignment of the CD and UV-Vis. bands is proposed. The interaction of Cu(II) ions with the Altromycin H has been also investigated by UV-Vis., CD and electron paramagnetic resonance (EPR) spectroscopy. A pH depended stepwise complex formation was observed. At pH<4 no copper-Altromycin H interactions were detected. At the 4相似文献   

9.
Shields SB  Franklin SJ 《Biochemistry》2004,43(51):16086-16091
A chimeric Cu-binding peptide has been designed on the basis of a turn substitution of the prion (PrP) octarepeat Cu-binding site into the engrailed homeodomain helix-turn-helix motif (HTH). This system is a model for the investigation of a single PrP Cu-binding site in a defined protein context. The 28-mer Cu-HTH peptide P7 spectroscopically mimics the PrP octarepeat (P7 = TERRRQQLSHGGGWGEAQIKIWFQNKRA). The Cu(II)-binding affinity of P7 was determined by ESI-MS and tryptophan fluorescence titrations to be K(d) = 2.5 +/- 0.7 microM at pH = 7.0. The quenching of fluorescence of the Trp within the binding loop (underlined above) is pH dependent and highly specific for Cu(II). No Trp quenching was observed in the presence of divalent Zn, Mn, Co, Ni, or Ca ions, and ESI-MS titrations confirmed that these divalent ions do not appreciably bind to P7. The EPR spectrum of Cu(II)-P7 shows that the Cu environment is axial and consistent with 6-coordinate N(3)O(H(2)O)(2) or N(4)(H(2)O)(2) coordination (A( parallel) = 172 x10(-)(4) cm(-)(1); g( parallel) = 2.27), very similar to that of the PrP octarepeat itself. Also like PrP, circular dichroism studies show that apo P7 is predominantly disordered in solution, and the structure is slightly enhanced by Cu binding. These data show the Cu-PrP HTH peptide reproduces the Cu-binding behavior of a single PrP octarepeat in a new context.  相似文献   

10.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

11.
The GGGTH sequence has been proposed to be the minimal sequence involved in the binding of a fifth Cu(II) ion in addition to the octarepeat region of the prion protein (PrP) which binds four Cu(II) ions. Coordination of Cu(II) by the N- and C-protected Ac-GGGTH-NH(2) pentapeptide (P(5)) was investigated by using potentiometric titration, electrospray ionization mass spectrometry, UV-vis spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry experiments. Four different Cu(II) complexes were identified and characterized as a function of pH. The Cu(II) binding mode switches from NO(3) to N(4) for pH values ranging from 6.0 to 10.0. Quasi-reversible reduction of the [Cu(II)(P(5))H(-2)] complex formed at pH 6.7 occurs at E (1/2)=0.04 V versus Ag/AgCl, whereas reversible oxidation of the [Cu(II)(P(5))H(-3)](-) complex formed at pH 10.0 occurs at E (1/2)=0.66 V versus Ag/AgCl. Comparison of our EPR data with those of the rSHaPrP(90-231) (Burns et al. in Biochemistry 42:6794-6803, 2003) strongly suggests an N(3)O binding mode at physiological pH for the fifth Cu(II) site in the protein.  相似文献   

12.
The complexes formed between D-3-phosphoglyceric acid and H(+), Cu(II) and VO(IV) were studied by pH-potentiometric and spectral (UV-Vis, EPR and CD) methods in order to describe the speciation of the metal ions and to determine the most probable binding modes in the complexes formed in these systems. The results show that, in the pH range between 2 and 4, mononuclear 1:1 complexes are formed through bidentate (MAH) or tridentate (MA) coordination of the ligand. At higher pH, when the proton competition for the central alcoholic-OH function decreases, alcoholate-bridged dinuclear species of composition M(2)A(2)H(-n) (n=1-3) become predominant. VO(IV) seems to have a higher tendency than Cu(II) to form such dinuclear complexes.  相似文献   

13.
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.  相似文献   

14.
Tamarind fruit shell (TFS) was converted to a cation exchanger (PGTFS-SP-COOH) having a carboxylate functional group at the chain end by grafting poly(hydroxyethylmethacrylate) onto TFS (a lignocellulosic residue) using potassium peroxydisulfate-sodium thiosulfate redox initiator, and in the presence of N, N ′-methylenebisacrylamide as a cross-linking agent, followed by functionalization. The chemical modification was investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and potentiometric titrations. The feasibility of PGTFS-SP-COOH for the removal of heavy metals such as U(VI), Cu(II), Zn(II), and Co(II) ions from aqueous solutions was investigated by batch process. The optimum pH range for the removal of meal ions was found to be 6.0. For all the metal ions, equilibrium was attained within 2 h. The kinetic and isotherm data, obtained at optimum pH value 6.0, could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. The Sips maximum adsorption capacity for U(VI), Cu(II), Zn(II), and Co(II) ions at 30°C was found to be 100.79, 65.69, 65.97, and 58. 81 mg/g, respectively. Increase of ionic strength decreased the metal ion adsorption. Different wastewater samples were treated with PGTFS-SP-COOH to demonstrate its efficiency in removing metal ions from wastewater. The adsorbed metal ions on PGTFS-SP-COOH can be recovered by treating with 1.0 M NaCl + 0.5 M HCl for U(VI) ions and 0.2 M HCl for Cu(II), Co(II), and Zn(II) ions. Four adsorption/desorption cycles were performed without significant decrease in removal capacity. The results showed that PGTFS-SP-COOH developed in this study exhibited considerable adsorption potential for the removal of U(VI), Cu(II), Zn(II), and Co(II) ions from water and wastewaters.  相似文献   

15.
The potential use of the immobilized Mentha arvensis distillation waste (IMADW) biomass for removal and recovery of Cu(II) and Zn(II) from aqueous was evaluated in the present study. Biosorption capacity of Cu(II) and Zn(II) on IMADW increased with increase in pH reaching a maximum at 5 for Cu(II) and 6 for Zn(II). The equilibrium sorption data agreed well with Langmuir isotherm model and pseudo-second-order kinetic model in batch mode. Cu(II) and Zn(II) uptake by IMADW was best described by pseudo-first-order kinetic model in continuous mode. Maximum Cu(II) and Zn(II) uptake by IMADW was 104.48 and 107.75 mg/g, respectively. Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also carried out to investigate functional groups and surface changes of biomass. The results showed that IMADW biomass is a potential biomaterial to remove Cu(II) and Zn(II) ions with a high biosorption capacity from aqueous solutions.  相似文献   

16.
Alkaline phosphatase (APase) was greater than 99% inactivated upon incubation with myo-inositol hexakisphosphate (IHP) and Cu(II) ions. In the absence of Cu(II), IHP did not inactivate the enzyme. Likewise, cupric ions alone did not produce inactivation. Reactions of APase with IHP plus Cu(II) were competitively inhibited by zinc ions. In contrast to the marked effect of (IHP-Cu) chelate complexes on APase activity, the complexes of IHP with either Zn(II) or Mn(II) had no discernable effect. Both the extent and the rate of activity loss were dependent on the combined IHP and Cu(II) concentration. At an IHP to Cu(II) ratio of 11.6, the extent of inactivation was approximately proportional to the Cu(II) concentration with maximal inactivation attained above 10 microM. Under the same conditions, a nonlinear relation (saturation kinetics) was observed between the pseudo first-order rate constants for the reaction and the IHP and Cu(II) concentration. On the basis of adherence of the data to a mechanism involving an intermediate whose concentration was rate determining, it was suggested that a ternary complexes composed of the apoprotein, the catalytic site zinc ions, and one or more specific IHP-Cu(II) complex [( IHP-Cu]*) may be the first step along the reaction coordinate. Relevant to this possibility which assumes active site interaction is the fact that both IHP alone and (IHP-Cu) complexes are good competitive inhibitors of p-nitrophenyl phosphate hydrolysis under the same solution conditions wherein APase inactivation occurs in the absence of substrate. Rates of enzyme inactivation are decreased with an increase in pH from 6.5 to 8.0. They are also dependent upon buffer type and concentration, apparently related to their association constants for cupric ion binding. Over and above such specific effects, rates of inactivation are also reduced with an increase in ionic strength. Depending on the ratio and concentrations of IHP and Cu(II) used in the reaction with APase, subsequent exposure to EDTA followed by assay in the presence of Zn(II) gave recoveries of activity ranging from 60% to 100%. Both the prior inactivated enzyme (containing IHP and cupric ions) in the presence of EDTA and the native APase upon simultaneous exposure to IHP, Cu(II), and EDTA were slowly and irreversibly inactivated. Correction for this effect gave reconstitution of activity of the (IHP-Cu)-inactivated APase by Zn(II) addition equivalent to that which could be obtained by EDTA-treatment of the native enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Torreggiani A  Tamba M  Fini G 《Biopolymers》2000,57(3):149-159
A comparative Raman and FTIR study of carnosine, a dipeptide present in several mammalian tissues, and its complexes with copper(II) at different pH values was carried out. The neutral imidazole ring gives rise to some bands that appear at different wavenumbers, depending on whether the imidazole ring is in the tautomeric form II or I. At pH 7 and 9 the molecule exists in equilibrium between the two tautomeric forms; tautomer I is predominant. Metal coordination is a factor that affects the tautomeric equilibrium, and the copper(II) coordination site can be monitored by using some Raman marker bands such as the vC(4)=C(5) band. On the basis of the vibrational results, conclusions can be drawn on the functional groups involved in the Cu(II) chelation and on the species existing in the Cu(II)-carnosine system. At neutral and basic pH the most relevant species formed when the Cu(II)/carnosine molar ratio is not very different from unity is a dimer, [Cu(2)L(2)H(-2)](0). In this complex the ligand coordinates the metal via the N (amino), O (carboxylate), and N (amide) donor atoms while the N(tau) nitrogen atoms of the imidazole rings (tautomer II) bridge the copper(II) ions. At a slightly acidic pH the two monomeric complexes [CuLH](2+) and [CuL](+) were present. In the former the imidazole ring takes part in the Cu(II) coordination in the tautomeric I form whereas in the latter it is protonated and not bound to Cu(II).  相似文献   

18.
Although Cu(II) ions bind to the prion protein (PrP), there have been conflicting findings concerning the number and location of binding sites. We have combined diethyl pyrocarbonate (DEPC)-mediated carbethoxylation, protease digestion, and mass spectrometric analysis of apo-PrP and copper-coordinated mouse PrP23-231 to "footprint" histidine-dependent Cu(II) coordination sites within this molecule. At pH 7.4 Cu(II) protected five histidine residues from DEPC modification. No protection was afforded by Ca(II), Mn(II), or Mg(II) ions, and only one or two residues were protected by Zn(II) or Ni(II) ions. Post-source decay mapping of DEPC-modified histidines pinpointed residues 60, 68, 76, and 84 within the four PHGGG/SWGQ octarepeat units and residue 95 within the related sequence GGGTHNQ. Besides defining a copper site within the protease-resistant core of PrP, our findings suggest application of DEPC footprinting methodologies to probe copper occupancy and pathogenesis-associated conformational changes in PrP purified from tissue samples.  相似文献   

19.
Metal ions such as zinc and copper can have dramatic effects on the aggregation kinetics of and the structures formed by several amyloidogenic peptides/proteins. Depending on the identity of the amyloidogenic peptide/protein and the conditions, Zn(II) and Cu(II) can promote or inhibit fibril formation, and in some cases these metal ions have opposite effects. To better understand this modulation of peptide aggregation by metal ions, the impact of Zn(II) binding to three amyloidogenic peptides (Aβ14-23, Aβ11-23, and Aβ11-28) on the formation and structure of amyloid-type fibrils was investigated. Zn(II) was able to accelerate fibril formation for all three peptides as measured by thioflavin T fluorescence and transmission electron microscopy. The effects of Zn(II) on Aβ11-23 and Aβ11-28 aggregation were very different compared with the effects of Cu(II), showing that these promoting effects were metal-specific. X-ray absorption spectroscopy suggested that the Zn(II) binding to Aβ11-23 and Aβ11-28 is very different from Cu(II) binding, but that the binding is similar in the case of Aβ14-23. A model is proposed in which the different coordination chemistry of Zn(II) compared with Cu(II) explains the metal-specific effect on aggregation and the difference between peptides Aβ14-23 and Aβ11-23/Aβ11-28.  相似文献   

20.
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(Cys)2H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0×10−4 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号