首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Control and diabetic rats were fed on semi-purified high-fat diets providing a polyunsaturated/saturated fatty acid ratio (P/S) of 1.0 or 0.25, to examine the effect of diet on the fatty acid composition of major phospholipids of the adipocyte plasma membrane. Feeding the high-P/S diet (P/S = 1.0) compared with the low-P/S diet (P/S = 0.25) increased the content of polyunsaturated fatty acids in membrane phospholipids in both control and diabetic animals. The diabetic state decreased the content of polyunsaturated fatty acids, particularly arachidonic acid, in adipocyte membrane phospholipids. The decrease in arachidonic acid in membrane phospholipids of diabetic animals tended to be normalized to within the control values when high-P/S diets were given. For control animals, altered plasma-membrane composition was associated with change in insulin binding, suggesting that change in plasma-membrane composition may have physiological consequences for insulin-stimulated functions in the adipocyte.  相似文献   

2.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.  相似文献   

3.
Spontaneously occurring action potentials and postsynaptic potentials were recorded intracellularly from mouse spinal cord (SC) neurons and dorsal root ganglion (DRG) neurons in mixed SC and DRG cell cultures. In some SC cells, excitatory postsynaptic potentials were evoked by electrical stimulation of a nearby SC or DRG cell. SC and DRG neurons had distinguishing morphologic and electrophysiologic properties. SC neurons usually were elliptical or stellate and had several branched processes whereas DRG cells were most commonly round and had on the average only one process, but occasionally 3 or 4. Calculations from cell measurements revealed that SC neurons had less soma surface area and more process surface area than DRG cells, with a similar total surface area for each class. Lower resting membrane potentials were recorded from SC neurons, but when the capability for action potential generation was tested at comparable steady membrane potentials, most SC and less than half of DRG neurons fired repetitively to electrical stimulation. During the depolarizing and repolarizing phases of SC cell action potentials the rates of change of membrane potential were lower than for DRG cells, which had rapidly rising action potentials and a markedly negative afterpotential. An initially delayed repolarization phase was characteristic of the DRG cell action potential. Cell cultures were prepared by trypsin dissociation of spinal cords with attached spinal ganglia from fetuses of 10, 11, 12, 13, 14, and 17 days gestational age. Cell cultures grown on plastic or collagen were studied electrophysiologically at times from 16 to 94 days.  相似文献   

4.
Nociceptive dorsal root ganglion (DRG) neurons express tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na(+) current (I(Na)) mediated by voltage-gated Na(+) channels (VGSCs). In nociceptive DRG neurons, VGSC β2 subunits, encoded by Scn2b, selectively regulate TTX-S α subunit mRNA and protein expression, ultimately resulting in changes in pain sensitivity. We hypothesized that VGSCs in nociceptive DRG neurons may also be regulated by β1 subunits, encoded by Scn1b. Scn1b null mice are models of Dravet Syndrome, a severe pediatric encephalopathy. Many physiological effects of Scn1b deletion on CNS neurons have been described. In contrast, little is known about the role of Scn1b in peripheral neurons in vivo. Here we demonstrate that Scn1b null DRG neurons exhibit a depolarizing shift in the voltage dependence of TTX-S I(Na) inactivation, reduced persistent TTX-R I(Na), a prolonged rate of recovery of TTX-R I(Na) from inactivation, and reduced cell surface expression of Na(v)1.9 compared with their WT littermates. Investigation of action potential firing shows that Scn1b null DRG neurons are hyperexcitable compared with WT. Consistent with this, transient outward K(+) current (I(to)) is significantly reduced in null DRG neurons. We conclude that Scn1b regulates the electrical excitability of nociceptive DRG neurons in vivo by modulating both I(Na) and I(K).  相似文献   

5.
A Pristerà  MD Baker  K Okuse 《PloS one》2012,7(8):e40079
Voltage-gated sodium channels (VGSCs) play a key role in the initiation and propagation of action potentials in neurons. Na(V)1.8 is a tetrodotoxin (TTX) resistant VGSC expressed in nociceptors, peripheral small-diameter neurons able to detect noxious stimuli. Na(V)1.8 underlies the vast majority of sodium currents during action potentials. Many studies have highlighted a key role for Na(V)1.8 in inflammatory and chronic pain models. Lipid rafts are microdomains of the plasma membrane highly enriched in cholesterol and sphingolipids. Lipid rafts tune the spatial and temporal organisation of proteins and lipids on the plasma membrane. They are thought to act as platforms on the membrane where proteins and lipids can be trafficked, compartmentalised and functionally clustered. In the present study we investigated Na(V)1.8 sub-cellular localisation and explored the idea that it is associated with lipid rafts in nociceptors. We found that Na(V)1.8 is distributed in clusters along the axons of DRG neurons in vitro and ex vivo. We also demonstrated, by biochemical and imaging studies, that Na(V)1.8 is associated with lipid rafts along the sciatic nerve ex vivo and in DRG neurons in vitro. Moreover, treatments with methyl-β-cyclodextrin (MβCD) and 7-ketocholesterol (7KC) led to the dissociation between rafts and Na(V)1.8. By calcium imaging we demonstrated that the lack of association between rafts and Na(V)1.8 correlated with impaired neuronal excitability, highlighted by a reduction in the number of neurons able to conduct mechanically- and chemically-evoked depolarisations. These findings reveal the sub-cellular localisation of Na(V)1.8 in nociceptors and highlight the importance of the association between Na(V)1.8 and lipid rafts in the control of nociceptor excitability.  相似文献   

6.

Background

Small neurons of the dorsal root ganglion (DRG) express five of the nine known voltage-gated sodium channels. Each channel has unique biophysical characteristics which determine how it contributes to the generation of action potentials (AP). To better understand how AP amplitude is maintained in nociceptive DRG neurons and their centrally projecting axons, which are subjected to depolarization within the dorsal horn, we investigated the dependence of AP amplitude on membrane potential, and how that dependence is altered by the presence or absence of sodium channel Nav1.8.

Results

In small neurons cultured from wild type (WT) adult mouse DRG, AP amplitude decreases as the membrane potential is depolarized from -90 mV to -30 mV. The decrease in amplitude is best fit by two Boltzmann equations, having V1/2 values of -73 and -37 mV. These values are similar to the V1/2 values for steady-state fast inactivation of tetrodotoxin-sensitive (TTX-s) sodium channels, and the tetrodotoxin-resistant (TTX-r) Nav1.8 sodium channel, respectively. Addition of TTX eliminates the more hyperpolarized V1/2 component and leads to increasing AP amplitude for holding potentials of -90 to -60 mV. This increase is substantially reduced by the addition of potassium channel blockers. In neurons from Nav1.8(-/-) mice, the voltage-dependent decrease in AP amplitude is characterized by a single Boltzmann equation with a V1/2 value of -55 mV, suggesting a shift in the steady-state fast inactivation properties of TTX-s sodium channels. Transfection of Nav1.8(-/-) DRG neurons with DNA encoding Nav1.8 results in a membrane potential-dependent decrease in AP amplitude that recapitulates WT properties.

Conclusion

We conclude that the presence of Nav1.8 allows AP amplitude to be maintained in DRG neurons and their centrally projecting axons even when depolarized within the dorsal horn.  相似文献   

7.
8.
Exploitation of localized phosphorus-patches by common bean roots   总被引:3,自引:1,他引:2  
S. Snapp  R. Koide  J. Lynch 《Plant and Soil》1995,177(2):211-218
Phosphorus (P) uptake from patches was investigated in high-P and low-P common bean (Phaseolus vulgaris L.) plants using a split-root system. A P-patch was developed by exposing a small sub-section of the root system to localized P enrichment. A soil-based media was used to provide realistically low, buffered levels of P. In addition, nutrient solution provided zero and 1 mM P to low-P and high-P plants, respectively. Overall, growth of low-P plants was approximately 40% that of high-P plants. Mycorrhizal infection by G. etunicatum had little detectable influence on plant growth. Root length exploring a P-patch was comparable for low-P and high-P plants, yet low-P plants allocated half as much root biomass and P to a P-patch compared to high-P plants. This was achieved by an increase in the investment in fine, terminal roots exploring a P-patch in low-P plants. P uptake per investment of dry weight in the P-patch was over 50% higher for high-P plants compared to low-P plants. The higher P-uptake efficiency in high-P plants was achieved despite the greater production of fine roots in low-P plants.  相似文献   

9.
Recent research communications indicate that the adult human brain contains undifferentiated, multipotent precursors or neural stem cells. It is not known, however, whether these cells can develop into fully functional neurons. We cultured cells from the adult human ventricular wall as neurospheres and passed them at the individual cell level to secondary neurospheres. Following dissociation and plating, the cells developed the antigen profile of the three main cell types in the brain (GFAP, astrocytes; O2, oligodendrocytes; and beta-III-tubulin/NeuN, neurons). More importantly, the cells developed the electrophysiological profiles of neurons and glia. Over a period of 3 weeks, neuron-like cells went through the same phases as neurons do during development in vivo, including up-regulation of inward Na+ -currents, drop in input resistance, shortening of the action potential, and hyperpolarization of the cell membrane. The cells developed overshooting action potentials with a mature configuration. Recordings in voltage-clamp mode displayed both the fast inactivating TTX-sensitive sodium current (INa) underlying the rising phase of the action potential and the two potassium currents terminating the action potential in mature neurons (IA and IK, sensitive to 4-AP and TEA, respectively). We have thus demonstrated that the human ventricular wall contains multipotent cells that can differentiate into functionally mature neurons.  相似文献   

10.
The essential role played by progesterone in the maintenance of pregnancy is unequivocal; however, the effects of progesterone on the secretory patterns of placental and pituitary molecules during the gestation period are not well defined. The objective of this study was to describe pregnancy-associated glycoprotein (PAG) concentrations (measured by RIA-497 and RIA-Pool) in pregnant females with progesterone concentrations lower (low-P4 group, n=20) or higher (high-P4 group, n=17) than the mean of 8.74 ng/mL on Day 21 (AI=Day 0). Luteinizing hormone (LH) and prolactin concentrations were also measured in both groups. Throughout the study period, blood samples were collected on Days 0, 21, 45, 60, and 80 from 37 females that were confirmed to be pregnant. PAG concentrations measured by both RIA-497 and RIA-Pool tended to be higher in high-P4 group than in low-P4 group from Day 30 until Day 80. On Day 80, plasma PAG concentrations that were measured using RIA-497 were observed to be higher (P<0.05) in the high-P4 group than in the low-P4 group (10.2+/-8.7 ng/mL versus 6.9+/-3.8 ng/mL). Concentrations of LH on Day 60 and prolactin on Day 80 were observed to be significantly lower (P<0.05) in the high-P4 group. There was a tendency for the concentrations of LH (Days 45 and 80) and prolactin (Days 30, 45, and 60) to be lower in cows in the high-P4 group than in the low-P4 group. Our results suggest the existence of a relationship among the concentration levels of progesterone, PAG, LH, and prolactin during early pregnancy.  相似文献   

11.
This study examines whether intestinal inflammation leads to changes in the properties of ion channels in dorsal root ganglia (DRG) neurons. Ileitis was induced by injection of trinitrobenzene sulfonic acid (TNBS), and DRG neurons innervating the ileum were labeled using fast blue. Intracellular recording techniques were used to measure electrophysiological properties of acutely dissociated neurons 12-24 h after dissection. Nociceptive neurons were identified by sensitivity to capsaicin, tetrodotoxin resistance, and size (<30 microm). The action potential threshold in neurons from TNBS-treated animals was reduced by >70% compared with controls (P < 0.001), but the resting membrane potential was unchanged. Cell diameter, input resistance (67%), and action potential upstroke velocity (22%) increased in the TNBS group (P < 0.05). The number of action potentials discharged increased in the TNBS group (P < 0.001), whereas application of 4-aminopyridine to control cells mimicked this effect. This study demonstrates that ileitis induces hyperexcitability in nociceptive DRG neurons and changes in the properties of Na(+) and K(+) channels at the soma, which persist after removal from the inflamed environment.  相似文献   

12.
Previous studies have shown that the serum levels of the primary regulators of calcium (Ca) and phosphorus (P) metabolism, 1,25-dihydroxyvitamin D and parathyroid hormone, may change with age. Therefore, the effect of age on the ability of the rat to maintain a positive Ca and P balance was determined. Young (1.5 months) and old (18 months) rats were divided into three groups and fed either a low-Ca, high-P diet; a high-Ca, low-P diet; or a high-Ca, high-P diet. After 14 days, the young rats were in positive Ca and P balance regardless of diet. The old rats on the low-Ca, high-P diet were in negative Ca balance and positive P balance. The old rats on the other diets were in positive Ca and P balance. The negative Ca balance of the old rats was due to decreased intestinal absorption of Ca. Intestinal absorption was assessed by determining the percentage of dietary Ca absorbed in vivo and by measuring the active transport of Ca using the everted gut sac in vitro. Intestinal P absorption showed little change with age, except for a decrease in old rats on the high-Ca, low-P diet. Renal adaptation to dietary Ca and P restriction was similar in both young and old animals. Plasma Ca levels were unchanged with age, but plasma P levels decreased with age regardless of diet. These changes in Ca balance with age may reflect the reported decrease in serum 1,25-dihydroxyvitamin D3 levels and the slight increase in PTH levels with age. The inability of old rats to maintain a positive Ca balance in the face of Ca deprivation is consistent with a general characteristic of the aging process—the decreased ability of an organism to adapt to changes in the external environment.  相似文献   

13.
Effects of mild microwave treatment (1 hr, 37 degrees C) on the in vitro development of rat mechanically dissociated dorsal root ganglion (DRG) neurons were investigated to establish whether microwave irradiation effects exist on nervous tissue other than heat induced tissue fixation. Phase contrast microscopy and immunocytochemical neurofilament stainings did not reveal significant differences between irradiated (2 hr after isolation) and control cultures, maintained up till 21 days. The electrophysiological properties of microwave exposed and non-exposed DRG neurons were compared using the whole-cell patch-clamp technique. Control neurons, in culture for 0-12 days, were excitable. In cultured cells (1-12 days), microwaved 2 hr after isolation, the action potentials were similar to or slightly different from those of the control cells. No acute microwave effects were found on neurons irradiated after 1 day of culture. These results suggest that mild microwave irradiation has neither significant acute nor strong long-term effects on DRG culture development and DRG neuron membrane properties, consistent with the notion that microwave effects essentially are temperature effects.  相似文献   

14.
The effects of chronic lead (Pb) exposure on neuronal electric membrane properties (EMP) were determined using neural cell cultures of adult mouse dorsal root ganglia (DRG). Cultures were exposed to Pb concentrations ranging from 0 to 100 microM for 12 days (8 DIV to 20 DIV). EMP were determined in Pb-free medium either immediately after withdrawal (IWD), or 6 days after withdrawal (6WD) from Pb. For IWD, regression analysis indicated that a number of EMP varied significantly with increasing Pb concentration. The largest such change occurred for electrical excitability which decreased significantly with increasing Pb (P = 0.000), being reduced by approximately two-thirds for neurons exposed to 100 microM Pb; resting membrane potential increased with Pb (P = 0.000); membrane time constant decreased with Pb (P = 0.007); action potential afterhyperpolarization decreased with Pb (P = 0.023). There was also evidence that the time course of action potentials was accelerated with increasing Pb concentrations, the rate of fall of neurons with biphasic falling phases being particularly increased (P = 0.047). This general pattern of altered EMP was observed for the 6WD condition also, indicating that chronic exposure to Pb caused persistent abnormalities in neuronal membranes even after 6 days of cultivation in Pb-free medium. The patterns of alterations in EMP suggested that chronic Pb exposure caused a prolonged increase in potassium permeability. It was proposed that the latter was mediated through a Pb-induced increase in intracellular ionic calcium and the associated disruption of calcium homeostasis.  相似文献   

15.
We examined cluster root formation and root exudation by white lupin (Lupinus albus L. cv. Kiev Mutant) in response to growth medium and phosphorus supply in a sand/solution split-root system. The split-root system consisted of a nutrient solution compartment and a siliceous sand compartment. Phosphorus was applied at 1 (low-P plants) or 50 (high-P plants) μM as KH2PO4 to the solution compartment and at 10, 50 or 250 mg P kg−1 as hydroxyapatite (Ca-P) to the sand compartment. In contrast to the high-P plants, P concentration and P uptake in the low-P plants increased with increasing P supply to the sand compartment. The NaHCO3-extractable P was lower in the rhizosphere of the low-P plants than the high-P ones. The proton extrusion rate by the solution-grown roots of the low-P plants was higher than that of the high-P plants at the early growth stage. For the low-P plants, the proportion of dry root biomass allocated to cluster roots was higher in the solution compartment than that in the sand compartment. The citrate exudation increased in the sand compartment and decreased in the solution compartment with time, showing a lack of synchronization in citrate exudation by two root halves grown in different media. The cluster root proportion and citrate exudation in both compartments decreased with increasing shoot P concentration. An additional experiment with no P added to either root compartment showed that the proportion of cluster roots was about 9% lower in the sand than solution compartments. The results suggest that cluster root formation and citrate exudation can be significantly affected by the root growth medium in addition to being regulated by shoot P status. More P can be exploited from sparingly available Ca-P by the low-P plants than the high-P ones due to greater citrate exudation under P deficiency.  相似文献   

16.
Soybean plants (Glycine max [L.] Merr var Amsoy 71) were grown in growth chambers with high-phosphorus (high-P) and low-phosphorus (low-P) culture solutions. Low-P treatment reduced shoot growth significantly 7 days after treatment began. Root growth was much less affected by low-P, there being no significant reduction in root growth rate until 17 days had elapsed. The results suggest that low-P treatment decreased soybean growth primarily through an effect on the expansion of the leaf surface which was diminished by 85%, the main effect of low-P being on the rate of expansion of individual leaves. Low-P had a lesser effect on photosynthesis; light saturated photosynthetic rates at ambient and saturating CO2 levels were lowered by 55 and 45%, respectively, after 19 days of low-P treatment. Low-P treatment increased starch concentrations in mature leaves, expanding leaves and fibrous roots; sucrose concentrations, however, were reduced by low-P in leaves and increased in roots. Foliar F-2,6-BP levels were not affected by P treatment in the light but in darkness they increased with high-P and decreased with low-P. The increase in the starch/sucrose ratio in low-P leaves was correlated primarily with changes in the total activities of enzymes of starch and sucrose metabolism.  相似文献   

17.
Differential alterations of sodium channels in small nociceptive C-fiber DRG neurons have been implicated in diabetic neuropathy. In this study, we investigated sodium currents and the expression of sodium channels in large A-fiber DRG neurons in diabetic rats. Compared with controls, large neurons from diabetic rats showed significant increases in both total and TTX-S sodium currents and approximately -15mV shifts in their voltage-dependent activation kinetics. TTX-R Na(v)1.9 sodium current was also significantly increased, whereas no alteration of TTX-R Na(v)1.8 current was observed in neurons from diabetic rats. Sodium current induced by fast- or slow-voltage ramps increased markedly in the diabetic neurons as well. Immunofluorescence studies showed significant increases in the levels and number of large DRG neurons from diabetic rats expressing Na(v)1.2, Na(v)1.3, Na(v)1.7, and Na(v)1.9 whereas Na(v)1.8 decreased. We also observed a decrease in the number of nodes of Ranvier expressing Na(v)1.8 and in staining intensity of Na(v)1.6 and Na(v)1.8 at nodes. Our results suggest that alterations of sodium channels occur in large DRG neurons and A-fibers, and may play an important role in diabetic sensory neuropathy.  相似文献   

18.
以6个不同磷吸收效率粳稻品种为材料,研究了缺磷条件下各种磷效率类型水稻品种的光合特性和细胞保护酶活性.结果表明:缺磷条件下,随着植株生长进程,不同磷效率水稻品种的光合速率(Pn)和可溶性蛋白质含量(pro)均不断下降;与丰磷处理相比,缺磷处理各测定时期的Pn和pro均有所降低.不同磷效率水稻品种中,磷高效品种的Pn(10.06~10.83μmolCO2.m-2.s-1)、叶绿素含量(3.32~3.56mg.g-1FM)和pro(33.08~33.95mg.g-1FM)最高,磷中效品种次之,磷低效品种最低;不同品种的气孔导度(Gs)差异不明显.随着磷胁迫时间的延长,各品种的超氧化物歧化酶(SOD)活性降低,表现为磷高效品种>中效品种>低效品种;各品种丙二醛含量的变化趋势与SOD活性相反;而过氧化物酶(POD)活性的变化规律不明显.因此,缺磷条件下,较高的SOD活性和较低的细胞膜脂过氧化程度在改善磷高效品种的光合生理功能中具有重要作用.  相似文献   

19.
Effects of reduction in potassium conductance on impulse conduction were studied in squid giant axons. Internal perfusion of axons with tetraethylammonium (TEA) ions reduces G K and causes the duration of action potential to be increased up to 300 ms. This prolongation of action potentials does not change their conduction velocity. The shape of these propagating action potentials is similar to membrane action potentials in TEA. Axons with regions of differing membrane potassium conductances are obtained by perfusing the axon trunk and one of its two main branches with TEA after the second branch has been filled with normal perfusing solution. Although the latter is initially free of TEA, this ion diffuses in slowly. Up until a large amount of TEA has diffused into the second branch, action potentials in the two branches have very different durations. During this period, membrane regions with prolonged action potentials are a source of depolarizing current for the other, and repetitive activity may be initiated at transitional regions. After a single stimulus in either axon region, interactions between action potentials of different durations usually led to rebound, or a short burst, of action potentials. Complex interactions between two axon regions whose action potentials have different durations resembles electric activity recorded during some cardiac arrhythmias.  相似文献   

20.
The small-diameter (<25 μm) and large-diameter (>30 μm) sensory neurons of the dorsal root ganglion (DRG) express distinct combinations of tetrodotoxin sensitive and tetrodotoxin-resistant Na(+) channels that underlie the unique electrical properties of these neurons. In vivo, these Na(+) channels are formed as complexes of pore-forming α and auxiliary β subunits. The goal of this study was to investigate the expression of β subunits in DRG sensory neurons. Quantitative single-cell RT-PCR revealed that β subunit mRNA is differentially expressed in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons. This raises the possibility that β subunit availability and Na(+) channel composition and functional regulation may differ in these subpopulations of sensory neurons. To further explore these possibilities, we quantitatively compared the mRNA expression of the β subunit with that of Na(v)1.7, a TTX-sensitive Na(+) channel widely expressed in both small and large DRG neurons. Na(v)1.7 and β subunit mRNAs were significantly correlated in small (β(2) and β(3)) and large (β(1) and β(2)) DRG neurons, indicating that these subunits are coexpressed in the same populations. Co-immunoprecipitation and immunocytochemistry indicated that Na(v)1.7 formed stable complexes with the β(1)-β(3) subunits in vivo and that Na(v)1.7 and β(3) co-localized within the plasma membranes of small DRG neurons. Heterologous expression studies showed that β(3) induced a hyperpolarizing shift in Na(v)1.7 activation, whereas β(1) produced a depolarizing shift in inactivation and faster recovery. The data indicate that β(3) and β(1) subunits are preferentially expressed in small and large DRG neurons, respectively, and that these auxiliary subunits differentially regulate the gating properties of Na(v)1.7 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号