首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Touch (T) sensory neurons in the leech innervate defined regions of skin and synapse on other neurons, including other T cells, within the ganglionic neuropil. The cells' receptive fields in the periphery are comprised of a central region, innervated by thick axons, and adjoining regions (minor fields) innervated by thinner axons. Secondary branches, known to be sites of synapses, emerge from the thinner and thicker axons. Pairs of T cells appear to make up to 200 separate contacts distributed within the neuropil. When the T cell is hyperpolarized, as occurs during natural stimulation of the cell, action potentials generated in the minor field and travelling into the ganglion along the thin axons may fail to conduct at central branch points. Evidence is presented, using axon conduction block and laser axotomy of cells filled with 6-carboxy-fluorescein, that synapses between separate groups of branches can function independently. Thus, selective activation of branches of the thin anterior axon produced a synaptic potential 36 +/- 6% of control amplitude, which was consistent with counts of 39 +/- 6% of contacts made by these branches. Laser axotomy of postsynaptic neurons showed that the anterior contacts indeed made the principal or only contacts activated during anterior conduction block. The results show that conduction block can modulate transmission within the ganglion, and it operates by silencing particular contacts between cells.  相似文献   

2.
1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is practically normal (Fig. 4). Near the end of the action potential, there is an apparent increase in the membrane resistance (Fig. 5D and Fig. 6, right). 3. The phenomenon of abolition of action potentials was demonstrated in the squid giant axon treated with TEA (Fig. 7). Following an action potential abolished in its early phase, there is no refractoriness (Fig. 8). 4. By the method of voltage clamp, the voltage-current relation was investigated on normal squid axons as well as on axons treated with TEA (Figs. 9 and 10). 5. The presence of stable states of the membrane was demonstrated by clamping the membrane potential with two voltage steps (Fig. 11). Experimental evidence was presented showing that, in an "unstable" state, the membrane conductance is not uniquely determined by the membrane potential. 6. The effect of low sodium water was investigated in the axon treated with TEA (Fig. 12). 7. The similarity between the action potential of a squid axon under TEA and that of the vertebrate cardiac muscle was stressed. The experimental results were interpreted as supporting the view that there are two stable states in the membrane. Initiation and abolition of an action potential were explained as transitions between the two states.  相似文献   

3.
Crayfish giant axons remain viable following internal perfusion with a mixture of fluoride and citrate salts. The relative favorability of various internal anions, and the dependence of resting and action potentials on internal cations are both similar to results on internally perfused squid axons. TEA widens the falling phase of the spike only from inside the axon, while DDT is active from either side of the membrane. Records of impedance changes show that effects of TEA and DDT on components of ionic conductances are similar to those found in other axons by voltage clamp measurements. Tannic acid perfused internally at a concentration of the order of 10 μM produces spontaneous activity, and a progressive increase in spike width. After 30 minutes, action potentials are “cardiac” type and are up to several minutes in duration. Records of impedance changes, and data from rapid changes in external ionic concentrations, suggest that the plateau phase of the spike is due to a maintained increase in sodium conductance. Since tannic acid is capable of crosslinking proteins and “rigidifying” protein monolayers, it is suggested that its effects on the axon may be the result of an interference with a conformational change in a membrane protein or protein-phospholipid complex during excitation.  相似文献   

4.
It has been shown both experimentally (Stockbridge, N., and L. L. Stockbridge. 1988. J. Neurophysiol. 59:1277-1285) and theoretically (Stockbridge, N. 1988. J. Neurophysiol. 59:1286-1295) that the second of two closely spaced action potentials may be differentially conducted into a short daughter branch. Using numerical methods, the response to trains was examined in axons with a single bifurcation and uniform membrane properties. Short daughter branches conduct at higher rates of stimulation than do long branches. Under some conditions the longer daughter branch is always silent. Under other conditions, one or both branches will begin to conduct action potentials only when the stimulus frequency is high enough.  相似文献   

5.
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.  相似文献   

6.
In developing muscle, synapse elimination reduces the number of motor axons that innervate each postsynaptic cell. This loss of connections is thought to be a consequence of axon branch trimming. However, branch retraction has not been observed directly, and many questions remain, such as: do all motor axons retract branches, are eliminated branches withdrawn synchronously, and are withdrawing branches localized to particular regions? To address these questions, we used transgenic mice that express fluorescent proteins in small subsets of motor axons, providing a unique opportunity to reconstruct complete axonal arbors and identify all the postsynaptic targets. We found that, during early postnatal development, each motor axon loses terminal branches, but retracting branches withdraw asynchronously and without obvious spatial bias, suggesting that local interactions at each neuromuscular junction regulate synapse elimination.  相似文献   

7.
Larger axons usually have faster conduction velocities, lower thresholds, and larger extracellular action potentials than smaller axons. However, it has been shown that the largest fiber, R2, in the right pleurovisceral connective of the marine mollusc, Aplysia, has a higher threshold and a slower conduction velocity than does the smaller axon of cell RI, even though the amplitude of R2's spike is larger than R1's spike. One explanation of this apparent parodox is that the two axons have different "intrinsic membrane and axoplasmic constants" (Goldman, L. (1961), J. Cell Comp. Physiol. 57: 185-191). However, the deep infolding of R2's axonal membrane suggested that differences in the shape of the two axons might also account for the paradox. Accordingly, we measured the conduction velocities of the two axons and then examined the same axons in the electron microscope in order to measure their volumes and surface areas. Our morphological observations indicate that the extensive infolding of surface membrane causes R2 to have a smaller volume to surface area ratio than R1. Thus, since conduction velocity is proportional to the square root of the volume to surface area ratio (Hodgkin, A.L. (1954), J. Physiol. 125: 221-224), it is predictable that the smaller axon would have a faster conduction velocity. The results suggest that the paradoxical conduction velocities can be explained largely as resulting from differences in the shapes of the two axons. However, certain discrepancies between the measured and the predicted values suggest that other factors are contributing as well.  相似文献   

8.
Squid giant axons were perfused intracellularly with solutions containing various kinds of proteases (1 mg/ml). Except for a 10 µ layer inside the axolemma the axoplasm was removed by a 5 min perfusion with Bacillus protease, strain N' (BPN'). The resting and action potentials were unchanged and the axon maintained its excitability for more than 4 hr on subsequent enzyme-free perfusion. After perfusion with protease solution for 30 min the axoplasm was almost completely removed. The excitability was maintained, but the action potential became prolonged and rapidly developed a plateau of several hundred milliseconds. The change was not reversible even when the enzyme was removed from the perfusing fluid. Two other enzymes, prozyme and bromelin, also removed the protoplasm without blocking conduction. Trypsin suppressed within 3 min the excitability of the axon. It is suggested that the proteases alter macromolecules in the excitable membrane and thus affect the shape of the action potential.  相似文献   

9.
Larger axons usually have faster conduction velocities, lower thresholds, and larger extracellular action potentials than smaller axons. However, it has been shown that the largest fiber, R2, in the right pleurovisceral connective of the marine mollusc, Aplysia, has a higher threshold and a slower conduction velocity than does the smaller axon of cell R1, even though the amplitude of R2's spike is larger than R1's spike. One explanation of this apparent paradox is that the two axons have different “intrinsic membrane and axoplasmic constants” (Goldman, L. (1961), J. Cell Comp. Physiol. 57: 185–191). However, the deep infolding of R2's axonal membrane suggested that differences in the shape of the two axons might also account for the paradox. Accordingly, we measured the conduction velocities of the two axons and then examined the same axons in the electron microscope in order to measure their volumes and surface areas. Our morphological observations indicate that the extensive infolding of surface membrane causes R2 to have a smaller volume to surface area ratio than R1. Thus, since conduction velocity is proportional to the square root of the volume to surface area ratio (Hodgkin, A. L. (1954), J. Physiol. 125: 221–224), it is predictable that the smaller axon would have a faster conduction velocity. The results suggest that the paradoxical conduction velocities can be explained largely as resulting from differences in the shapes of the two axons. However, certain discrepancies between the measured and the predicted values suggest that other factors are contributing as well.  相似文献   

10.
Afferent activity in a receptor afferent fiber with several encoding sites is generally believed to represent the activity of the fastest pacemaker that resets all more slowly encoding sites. Alternatively, some impulse mixing as well as some nonlinear summation of receptor current to a single encoder have been considered. In this article the repetitive firing activity of a Hodgkin-Huxley axon consisting of two branches that join into a single stem axon was investigated. The model axon was stimulated by constant-current injection into either the right or the left or both branches. It was found that the model axon generated an (infinite) train of action potentials if the input current was large enough. The discharge frequency found was constant, and on combined stimulation of both branches with different current, the site of impulse initiation was always in the branch receiving the higher input current, excluding a simple impulse mixing. On the other hand, the combined stimulation of both branches evoked repetitive firing with a higher frequency than expected by the pacemaker-resetting hypothesis. Moreover, a stimulus that is subthreshold for repetitive firing if injected into one branch yields repetitive firing when it is injected into both branches, a behavior inconsistent with impulse mixing and pacemaker resetting. On the other hand, current injection into one branch allowed repetitive activity only within a rather limited range of firing frequencies. Using distributed current injection into both branches, however, allowed many more different firing frequencies. Such behavior is inconsistent with both pacemaker resetting and (nonlinear) input current summation. Consequently, the repetitive firing behavior of a branched Hodgkin-Huxley axon with multiple encoding sites appears to be more complex than postulated in the simple hypotheses.  相似文献   

11.
Axon branching and synapse formation are critical processes for establishing precise circuit connectivity. These processes are tightly regulated by neural activity, but the relationship between them remains largely unclear. We use organotypic coculture preparations to examine the role of synapse formation in the activity‐dependent axon branching of thalamocortical (TC) projections. To visualize TC axons and their presynaptic sites, two plasmids encoding DsRed and EGFP‐tagged synaptophysin (SYP‐EGFP) were cotransfected into a small number of thalamic neurons. Time‐lapse imaging of individual TC axons showed that most branches emerged from SYP‐EGFP puncta, indicating that synapse formation precedes emergences of axonal branches. We also investigated the effects of neuronal activity on axon branching and synapse formation by manipulating spontaneous firing activity of thalamic cells. An inward rectifying potassium channel, Kir2.1, and a bacterial voltage‐gated sodium channel, NaChBac, were used to suppress and promote firing activity, respectively. We found suppressing neural activity reduced both axon branching and synapse formation. In contrast, increasing neural activity promoted only axonal branch formation. Time‐lapse imaging of NaChBac‐expressing cells further revealed that new branches frequently appeared from the locations other than SYP‐EGFP puncta, indicating that enhancing activity promotes axonal branch formation due to an increase of branch emergence at nonsynaptic sites. These results suggest that presynaptic locations are hotspots for branch emergence, and that frequent firing activity can shift branch emergence to a synapse‐independent process. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 323–336, 2016  相似文献   

12.
A short region of high axial resistivity at one daughter branch of an axonal bifurcation can produce frequency dependent differential conduction of action potentials. The increase in resistivity need be only a few times that in the rest of the axon and length of the affected region need be only a fraction of a resting length constant (based on the local value of axial resistivity). The typical pattern observed will be that the unaffected daughter branch will conduct action potentials from the parent axon normally at all frequencies of stimulation, but the branch with the high resistance region will only follow action potentials within a restricted frequency range. In that band-pass region, the branch may conduct nearly all or only a small percentage of the action potentials from the parent axon.  相似文献   

13.
The present investigation continues a previous study in which the soma-dendrite system of sensory neurons was excited by stretch deformation of the peripheral dendrite portions. Recording was done with intracellular leads which were inserted into the cell soma while the neuron was activated orthodromically or antidromically. The analysis was also extended to axon conduction. Crayfish, Procambarus alleni (Faxon) and Orconectes virilis (Hagen), were used. 1. The size and time course of action potentials recorded from the soma-dendrite complex vary greatly with the level of the cell's membrane potential. The latter can be changed over a wide range by stretch deformation which sets up a "generator potential" in the distal portions of the dendrites. If a cell is at its resting unstretched equilibrium potential, antidromic stimulation through the axon causes an impulse which normally overshoots the resting potential and decays into an afternegativity of 15 to 20 msec. duration. The postspike negativity is not followed by an appreciable hyperpolarization (positive) phase. If the membrane potential is reduced to a new steady level a postspike positivity appears and increases linearly over a depolarization range of 12 to 20 mv. in various cells. At those levels the firing threshold of the cell for orthodromic discharges is generally reached. 2. The safety factor for conduction between axon and cell soma is reduced under three unrelated conditions, (a) During the recovery period (2 to 3 msec.) immediately following an impulse which has conducted fully over the cell soma, a second impulse may be delayed, may invade the soma partially, or may be blocked completely. (b) If progressive depolarization is produced by stretch, it leads to a reduction of impulse height and eventually to complete block of antidromic soma invasion, resembling cathodal block, (c) In some cells, when the normal membrane potential is within several millivolts of the relaxed resting state, an antidromic impulse may be blocked and may set up within the soma a local potential only. The local potential can sum with a second one or it may sum with potential changes set up in the dendrites, leading to complete invasion of the soma. Such antidromic invasion block can always be relieved by appropriate stretch which shifts the membrane potential out of the "blocking range" nearer to the soma firing level. During the afterpositivity of an impulse in a stretched cell the membrane potential may fall below or near the blocking range. During that period another impulse may be delayed or blocked. 3. Information regarding activity and conduction in dendrites has been obtained indirectly, mainly by analyzing the generator action under various conditions of stretch. The following conclusions have been reached: The large dendrite branches have similar properties to the cell body from which they arise and carry the same kind of impulses. In the finer distal filaments of even lightly depolarized dendrites, however, no axon type all-or-none conduction occurs since the generator potential persists to a varying degree during antidromic invasion of the cell. With the membrane potential at its resting level the dendrite terminals contribute to the prolonged impulse afternegativity of the soma. 4. Action potentials in impaled axons and in cell bodies have been compared. It is thought that normally the over-all duration of axon impulses is shorter. Local activity during reduction of the safety margin for conduction was studied. 5. An analysis was made of high frequency grouped discharges which occasionally arise in cells. They differ in many essential aspects from the regular discharges set up by the generator action. It is proposed that grouped discharges occur only when invasion of dendrites is not synchronous, due to a delay in excitation spread between soma and dendrites. Each impulse in a group is assumed to be caused by an impulse in at least one of the large dendrite branches. Depolarization of dendrites abolishes the grouped activity by facilitating invasion of the large dendrite branches.  相似文献   

14.
The topographic projection of retinal ganglion cell (RGC) axons to mouse superior colliculus (SC) or chick optic tectum (OT) is formed in three phases: RGC axons overshoot their termination zone (TZ); they exhibit interstitial branching along the axon that is topographically biased for the correct location of their future TZ; and branches arborize preferentially at the TZ and the initial exuberant projection refines through axon and branch elimination to generate a precise retinotopic map. We present a computational model of map development that demonstrates that the countergradients of EphAs and ephrinAs in retina and the OT/SC and bidirectional repellent signaling between RGC axons and OT/SC cells are sufficient to direct an initial topographic bias in RGC axon branching. Our model also suggests that a proposed repellent action of EphAs/ephrinAs present on RGC branches and arbors added to that of EphAs/ephrinAs expressed by OT/SC cells is required to progressively restrict branching and arborization to topographically correct locations and eliminate axon overshoot. Simulations show that this molecular framework alone can develop considerable topographic order and refinement, including axon elimination, a feature not programmed into the model. Generating a refined map with a condensed TZ as in vivo requires an additional parameter that enhances branch formation along an RGC axon near sites that it has a higher branch density, and resembles an assumed role for patterned neural activity. The same computational model generates the phenotypes reported in ephrinA deficient mice and Isl2-EphA3 knockin mice. This modeling suggests that gradients of counter-repellents can establish a substantial degree of topographic order in the OT/SC, and that repellents present on RGC axon branches and arbors make a substantial contribution to map refinement. However, competitive interactions between RGC axons that enhance the probability of continued local branching are required to generate precise retinotopy.  相似文献   

15.
The efflux of labeled and unlabeled potassium ions from the squid giant axon has been measured under a variety of experimental conditions. Axons soaked in sea water containing 42K ions lost radioactivity when placed in inactive sea water according to kinetics which indicate the presence of at least two cellular compartments. A rapidly equilibrating superficial compartment, probably the Schwann cell, was observed to elevate the specific activity of 42K lost from such axons to K-free sea water for a period of hours. The extra radioactive potassium loss from such axons during stimulation, however, was shown to have a specific activity identical within error to that measured in the axoplasm at the end of the experiment. The same was shown for the extra potassium loss occurring during passage of a steady depolarizing current. Axons placed in sea water with an elevated potassium ion concentration (50 mM) showed an increased potassium efflux that was in general agreement with the accompanying increase in membrane conductance. The efflux of potassium ions observed in 50 mM K sea water at different membrane potentials did not support the theory that the potassium fluxes obey the independence principle.  相似文献   

16.
Electrical properties of the axon membrane were examined under internal perfusion of squid giant axons with a dilute solution of NaF or CsF. The rate of propagation of the action potential was markedly enhanced when NaCl was added to the external CaCl2 solution. The membrane conductance both at rest and during the action potential was increased with increasing Na-concentration in the external medium. In the perfusion zone of these axons, the action potentials in different parts of the membrane were found to terminate in a more-or-less spatially random and temporally irregular fashion. When the electric field outside the axon membrane was examined with hyperfine glass-pipette electrodes, small rectangular potential changes of uniform amplitude were observed. The small potential changes, which resemble those obtained by Bean in EIM-treated lipid bilayer, were interpreted as indicating spatial non-uniformity of the axon membrane during excitation. The importance of long-range electric interaction between different parts of the axon membrane is emphasized.  相似文献   

17.
The Mechanism of Discharge Pattern Formation in Crayfish Interneurons   总被引:1,自引:1,他引:0  
Excitatory and inhibitory processes which result in the generation of output impulses were analyzed in single crayfish interneurons by using intracellular recording and membrane polarizing techniques. Individual spikes which are initiated orthodromically in axon branches summate temporally and spatially to generate a main axon spike; temporally dispersed branch spikes often pace repetitive discharge of the main axon. Hyperpolarizing IPSP's sometimes suppress axonal discharge to most of these inputs, but in other cases may interact selectively with some of them. The IPSP's reverse their polarity at a hyperpolarized level of membrane potential; they sometimes exhibit two discrete time courses indicating two different input sources. Outward direct current at the main axon near branches causes repetitive discharges which may last, with optimal current intensities, for 1 to 15 seconds. The relation of discharge frequency to current intensity is linear for an early spike interval, but above 100 to 200 impulses/sec. it begins to show saturation. In one unit the current-frequency curve exhibited two linear portions, suggesting the presence of two spike-generating sites in the axon. Current threshold measurements, using test stimuli of different durations, showed that both accommodation and "early" or "residual" refractoriness contribute to the determination of discharge rate at different frequencies.  相似文献   

18.
Rapid conduction and the evolution of giant axons and myelinated fibers   总被引:1,自引:0,他引:1  
Nervous systems have evolved two basic mechanisms for increasing the conduction speed of the electrical impulse. The first is through axon gigantism: using axons several times larger in diameter than the norm for other large axons, as for example in the well-known case of the squid giant axon. The second is through encasing axons in helical or concentrically wrapped multilamellar sheets of insulating plasma membrane--the myelin sheath. Each mechanism, alone or in combination, is employed in nervous systems of many taxa, both vertebrate and invertebrate. Myelin is a unique way to increase conduction speeds along axons of relatively small caliber. It seems to have arisen independently in evolution several times in vertebrates, annelids and crustacea. Myelinated nerves, regardless of their source, have in common a multilamellar membrane wrapping, and long myelinated segments interspersed with 'nodal' loci where the myelin terminates and the nerve impulse propagates along the axon by 'saltatory' conduction. For all of the differences in detail among the morphologies and biochemistries of the sheath in the different myelinated animal classes, the function is remarkably universal.  相似文献   

19.
Squid giant axons internally perfused with a 30 mM NaF solution and bathed in a 100 mM CaCl2 solution, which are known to produce long lasting action potentials in response to pulses of outward current, were investigated. The effects of tetrodotoxin (TTX) and of tetraethylammonium ion (TEA+) on such action potentials were studied. The results are summarized as follows: (a) An addition of 1--3 microM TTX to the external solution altered but did not block the action potentials; it increased the height of the action potential by approximately 15 mV, and it decreased the membrane conductance as the peak of excitation by about two-thirds. (b) Voltage-clamp experiments performed with both NaCl and TTX in the external CaCl2 solution revealed that the TTX-insensitive action potential does not involve a rise in gNa, whereas the experiments performed without TTX showed that the action potential is accompanied by a large rise in gNa. (c) Internally applied TEA+ was shown to selectively block the TTX- insensitive action potential, but it did not block the other component of the action potential, which is accompanied by a rise in gNa, and which is selectively suppressed by TTX. (d) The addition of a small amount of KCl to the external CaCl2 solution containing TTX greatly increased both the maximum peak inward current under voltage clamp and the maximum slope conductance. Furthermore, it was shown that K+ applied on both sides of the axon plays a dominant role in producing the membrane potential in the active state in the presence of TTX, even though a large amount of Ca2+ is presented in the bathing medium. These observations have led me to conclude that the sodium channel is responsible for the production of the TTX-sensitive component of the action potential under the ionic conditions of these experiments, and the potassium channel for the TTX-insensitive component of the action potential.  相似文献   

20.
Preface     
The physiological function of the axon is to conduct short all-or-none action potentials from their site of initiation (usually the cell body) to the synapse. To ensure this function, both passive and active biophysical properties of the axons are tuned very precisely, especially the voltage-dependent ionic conductances to sodium and potassium. Under normal conditions, axons are not spontaneously active. Minor modifications of their ionic micro-environment or slight changes in the membrane properties are however sufficient to induce rhythmical activity and modify the time course of the action potentials. These modifications can be induced by a variety of pharmacological agents. Some typical examples taken from original studies on invertebrate preparations are illustrated. The experiments were carried out on two axonal preparations: the giant axon of the squid Loligo forbesi and the giant axon of the cockroach Periplaneta americana. The axons were ‘space-clamped’ and studied under both current-clamp and voltage-clamp conditions. Voltage-clamp experiments were used to dissect out the mechanisms underlying repetitive activity and to extract the relevant parameters. These parameters were then used to rebuild the observed effects using an extended version of the Hodgkin and Huxley (1952, J Physiol (Lond) 117, 500–544) formulation. One easy way to get repetitive firing in both preparations is to reduce potassium conductance. The effect of 4-aminopyridine on squid axon is illustrated here. The experimental results, including the occurrence of bursts of activity, can be described by adding a time- and voltage-dependent block of the potassium channels to the original Hodgkin and Huxley (1952, J Physiol (Lond) 117, 500–544) model. Repetitive spike activity and plateau action potentials are also produced when the depolarising effect of the voltage-dependent potassium current is counterbalanced by a maintained inward sodium current. This maintained sodium current can be due to several different mechanisms. This will be illustrated by five structurally unrelated molecules: two scorpion toxins, two insecticide molecules and one sea anemone toxin. One toxin purified from the venom of the scorpion Buthotus judaïcus (insect toxin 1) exerts its effects by shifting the sodium activation curve towards more hyperpolarized potentials. Another toxin purified from the venom of another scorption Androctonus australis (mammal toxin 1) modifies a significant proportion of normal (fast) sodium channels into slowly activating and inactivating sodium channels. The main effect of the insecticide DDT is to maintain sodium channels in the ‘open’ configuration. Another insecticide molecule known to induce repetitive activity, S-bioallethrin, activates voltage-dependent sodium channels with slow activation and inactivation kinetics. The sea anemone toxin anthopleurin A, purified from the venom of Anthopleura xanthogrammica, delays inactivation of the sodium current without changing its activation kinetics. These examples show that minor modifications of the properties of the nerve membrane are sufficient to alter nerve function. These deleterious effects will be amplified at the synapse through dramatic changes in transmitter release and will lead eventually to disastrous alterations of brain function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号