首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA encoding a second zinc transporter (ZnT-2) was isolated from a rat kidney cDNA expression library by complementation of a zinc-sensitive BHK cell line. The protein predicted from the open reading frame of ZnT-2 cDNA has 359 amino acids and initiates with a CTG codon. It resembles ZnT-1 (a plasma membrane protein that stimulates zinc efflux) in overall topology in that it has six membrane-spanning domains, a histidine-rich intracellular loop and a long C-terminal tail; however, the overall amino acid identity is only 26%. Unlike ZnT-1, which is in the plasma membrane and lowers cellular zinc by stimulating zinc efflux, ZnT-2 is localized on vesicles and allows the zinc-sensitive BHK cells to accumulate zinc to levels that are much higher than non-transformed cells can tolerate. Zinc was visualized within these vesicles with zinquin, a zinc-specific fluorescent probe. The intracellular compartment that accumulates zinc is acidic as revealed by staining with acridine orange or LysoTracker. Prolonged exposure of cells expressing ZnT-2 to zinc causes an accretion of intracellular vesicles. We suggest that ZnT-2 protects these cells from zinc toxicity by facilitating zinc transport into an endosomal/lysosomal compartment.  相似文献   

2.
Intracellular homeostasis for zinc is achieved through the coordinate regulation of specific transporters engaged in zinc influx, efflux, and intracellular compartmentalization. We have identified a novel mammalian zinc transporter, zinc transporter 5 (ZnT-5), by virtue of its similarity to ZRC1, a zinc transporter of Saccharomyces cerevisiae, a member of the cation diffusion facilitator family. Human ZnT-5 (hZnT-5) cDNA encodes a 765-amino acid protein with 15 predicted membrane-spanning domains. hZnT-5 was ubiquitously expressed in all tested human tissues and abundantly expressed in the pancreas. In the human pancreas, hZnT-5 was expressed abundantly in insulin-containing beta cells that contain zinc at the highest level in the body. The hZnT-5 immunoreactivity was found to be associated with secretory granules by electron microscopy. The hZnT-5-derived zinc transport activity was detected using the Golgi-enriched vesicles prepared from hZnT-5-induced HeLa/hZnT-5 cells in which exogenous hZnT-5 expression is inducible by the Tet-on gene regulation system. This activity was dependent on time, temperature, and concentration and was saturable. Moreover, zinc at a high concentration (10 mm) inhibited the growth of yeast expressing hZnT-5. These results suggest that ZnT-5 plays an important role for transporting zinc into secretory granules in pancreatic beta cells.  相似文献   

3.
A balance between zinc uptake by ZIP (SLC39) and efflux of zinc from the cytoplasm into subcellular organelles and out of the cell by ZnT (SLC30) transporters is crucial for zinc homeostasis. It is not clear whether normal and cancerous pancreatic cells respond differently to increased extracellular zinc concentrations. Use of flow cytometry-based methods revealed that treatment with as little as 0.01 mM zinc induced significant cytotoxicity in two human ductal adenocarcinoma cell lines. In contrast, normal human pancreatic islet cells tolerated as high as 0.5 mM zinc. Insulinoma cell lines of mouse and rat origin also succumbed to high concentrations of zinc. Exposure to elevated zinc concentrations enhanced the numbers of carcinoma but not primary islet cells staining with the cell-permeable zinc-specific fluorescent dye, FluoZin-3, indicating increased zinc influx in transformed cells. Mitochondrial membrane depolarization, superoxide generation, decreased antioxidant thiols, intracellular acidosis and activation of intracellular caspases characterized zinc-induced carcinoma cell death. Only the antioxidant glutathione but not inhibitors of enzymes implicated in apoptosis or necrosis prevented zinc-induced cytotoxicity in insulinoma cells. Immunoblotting revealed that zinc treatment increased the ubiquitination of proteins in cancer cells. Importantly, zinc treatment up-regulated the expression of ZnT-1 gene in a rat insulinoma cell line and in two human ductal adenocarcinoma cell lines. These results indicate that the exposure of pancreatic cancer cells to elevated extracellular zinc concentrations can lead to cytotoxic cell death characterized by increased protein ubiquitination and up-regulation of the zinc transporter ZnT-1 gene expression.  相似文献   

4.
Zinc is essential for cell growth and is a co-factor for more than 300 enzymes, representing over 50 different enzyme classes. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while ZIP transporters increase intracellular zinc. Previous studies have shown that zinc concentration in breast cancer tissues is higher than that in normal breast tissues. However, the mechanisms involved and the relations to zinc transporters are still unknown. A series of zinc transporters are characterized in this article and several of that are emphasized in view of their unique tissue-specific expressions. Established human breast cancer in a nude mice model is used. With a dietary zinc supplement treatment, ZnT-1 mRNA expression in established human breast cancer is raised by 24%, and is nearly 2 times of that in basal diet. ZIP1, ZIP2 and LIV-1 mRNA are the same between two treatment groups. Moreover, no significant changes of these zinc transporters expressions are found between differential breast cancer cell lines in the nude mice model. This is the first report, which detects the zinc transporters expressions in established human breast cancer in nude mice model. These results lead to the constitutive expression and response to zinc in different tissues. In addition to that, ZnT-1 seems to have played an important role in zinc homeostasis, even in breast cancer.  相似文献   

5.
Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.  相似文献   

6.
A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 micromol/L Zn) in cell culture, and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2) and Zip1 (SLC39A1). Zinc release by cells of the BBB model significantly increased after 12-24 h of exposure, but decreased back to control levels after 48-96 h, as indicated by transport across the BBB from both the ablumenal (brain) and the lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased by 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure, but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and the ablumenal directions within 12-24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB's response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cells' capacity to sequester zinc with additional MT and to increase zinc export with the ZnT-1 protein. But the longer-term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and to maintain brain zinc homeostasis.  相似文献   

7.
沈杰  刘振国  沈芳  吉挺 《昆虫学报》2013,56(10):1117-1126
【目的】本研究旨在克隆卡尼鄂拉蜂Apis mellifera carnica锌转运蛋白 7相似蛋白(zinc transporter 7-like, ZnT-7-like)基因, 制备ZnT-7-like多克隆抗体, 了解该基因在卡尼鄂拉蜂王浆腺中不同时期的差异表达情况。【方法】运用RT PCR法从卡尼鄂拉蜂王浆腺总RNA中扩增ZnT-7-like基因, 进行生物信息学分析, 为避开跨膜结构的干扰, 选择克隆其部分序列(273 bp)作为多肽免疫序列。将其亚克隆入原核表达载体pGEX-4T-1, 转入大肠杆菌Escherichia coli BL21 (DE3)中诱导表达获得融合蛋白, 然后将融合蛋白纯化后免疫新西兰大白兔制备多克隆抗体, 分别用间接ELISA和Western blot检测抗体的效价和特异性, 最后采用实时荧光定量RT-PCR以及Western blot技术检测该基因在不同日龄成虫王浆腺中的相对表达量。【结果】克隆得到卡尼鄂拉蜂ZnT-7-like基因, 大小为1 065 bp。SDS-PAGE电泳结果显示融合蛋白成功表达; 制备的多克隆抗体效价高达1∶64 000, 且具有很高的特异性。ZnT-7-like在卡尼鄂拉蜂5个日龄成虫中的转录情况存在较大差异, 表现为3日龄成虫中的表达量极显著高于其他日龄(P<0.01), 12日龄表达量最低, 其他日龄间表达量两两差异显著(P<0.05)或极显著(P<0.01); ZnT-7-like蛋白表达与转录水平基本一致。【结论】成功克隆了卡尼鄂拉蜂ZnT-7-like基因, 制备了兔抗蜂ZnT-7-like多克隆抗体, 并在转录和翻译两个水平上测定了ZnT-7-like在卡尼鄂拉蜂王浆腺中不同时期的相对表达量。这些结果为深入研究卡尼鄂拉蜂ZnT-7-like基因的功能奠定了基础。  相似文献   

8.
The cDNA of a zinc transporter-1 (ZnT-1) gene was cloned from an established cell line derived from common carp (Cyprinus carpio) using rapid amplification of cDNA ends (RACE). Using real-time quantitative PCR, we showed that both zinc (Zn) and cadmium (Cd) transiently upregulate ZnT-1 mRNA to comparable levels. The loosely bound cellular Zn pool, as estimated using the Zn-specific probe FluoZin-3, was increased threefold after exposure to 250 microM ZnCl(2). Correspondingly, the ZnT-1 mRNA level at 24 h was induced about fivefold, reflecting the need for more zinc export capacity. Total cellular zinc levels were not different from the controls after 72 h of exposure to 10, 50, or 250 microM ZnCl(2). A loss of total cellular Zn but little labile zinc changes were observed with up to 25 microM Cd. At 72 h, the total Zn was partially restored to the control levels, only 1 microM Cd allowed for a full recovery. Downregulation of ZnT-1 mRNA and partial loss of loosely bound Zn were observed with 50 microM Cd. Our results clearly show that although Zn and Cd can both regulate Zn export in EPC cells, the effects on the cellular Zn pools are quite different.  相似文献   

9.
Zinc is an essential nutrient for all organisms, which is involved in the function of numerous key enzymes in metabolism. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while Zip transporters increase intracellular zinc. Previous studies in our laboratory have shown that Zip-1, ZnT-1, Zip-2 and LIV-1 mRNA are associated with zinc level in established human breast cancer in nude mice model. In this study, six zinc transporters: ZnT-1, ZnT-2, ZnT-4, Zip-1, Zip-8 and Zip-13 were chosen. We aim to determine the relation between zinc transporters and zinc level in kidney and lung of Wistar rats. Eighteen Wistar rats were randomly divided into three groups: normal group, zinc-deficiency group and pair-fed group. After 22 days, the rats were killed and organs samples were taken, then zinc transporters mRNA were detected by RT-PCR. Compared with the normal group, Zip-13 shows an up-regulation (P < 0.05) in zinc-deficiency group both in kidney and lung, and Zip-8 was significantly lower (P < 0.05) in zinc-deficiency group in kidney.  相似文献   

10.
Zinc is essential for cell growth. Previous studies have shown that zinc concentration in breast cancer tissues is higher than that in normal breast tissues. Zinc cannot passively diffuse across cell membranes and specific zinc transporter proteins are required. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while ZIP transporters increase intracellular zinc. In this study, three human zinc transporter members: ZnT-1, ZIP2 and LIV-1 were chosen. We aimed to determine the effect of flaxseed lignan on the growth of ER-negative breast cancer cells in a nude mice model and observe the effect of flaxseed lignan on the regulation of the three zinc transporter in mRNA level. Nude mice were xenografted with human breast cancer cell line MDA-MB-231 and 6 weeks later were fed either the basal diet (BD) or BD supplemented with 10% FS and SDG for 5 weeks. The SDG levels were equivalent to the amounts in the 10% FS. RT-PCR was performed. Compared with the BD group, the tumor growth rate was significantly lower (P < 0. 05) in the FS and SDG group. ZnT-1 mRNA level in mammary tumor was increased in SDG group and decreased in FS group, but no significant difference was found. Extremely low amplification of ZIP2 from mRNA was detected, with no difference between the treatment groups. LIV-1 mRNA expression of SDG group increases compared with BD group. In FS group, it significantly increases nearly 9 times than that in BD group (P < 0. 005).  相似文献   

11.
We have previously demonstrated that reducing the availability of zinc with the extracellular chelator diethylenetriaminepentaacetic acid (DTPA) promotes efflux of (65)Zn from rat primary hepatocytes and pituitary cells, but increases retention of label in rat hepatoma (H4IIE) and anterior pituitary tumor (GH3) cell lines. To further understand this differential response between primary cells and the corresponding cancer cell lines, we investigated the effects of immortalizing primary cells on their zinc homeostasis. Rat primary hepatocytes were electroporated with the SV40 large T-antigen-coding plasmid pSV3-neo and selected for neomycin resistance. This resulted in cell division of the normally quiescent hepatocytes. When these cells were prelabeled with (65)Zn, DTPA decreased efflux of (65)Zn, similarly to hepatoma cells and differently from primary hepatocytes. This homeostatic change may be required to account for the greater zinc requirements of dividing cells and be mediated by alterations in the activity of zinc transporter ZnT-1, which is responsible for zinc efflux. To further understand the mechanism of DTPA-induced zinc retention, we down-regulated the expression of ZnT-1 in rat hepatoma cells using vector-based short hairpin RNA interference. Expression of ZnT-1 protein was reduced to approximately 50%. Down-regulation of ZnT-1 resulted in greater retention of (65)Zn in control cells. However, DTPA increased rather than decreased efflux of label from knockdown cells, suggesting that functional ZnT-1 is required for the decreased efflux in response to DTPA. We conclude that ZnT-1 expression is crucial for maintaining zinc homeostasis, in particular, for the enhanced retention of zinc in transformed cells when subjected to zinc deprivation.  相似文献   

12.
The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously we found that the expression of ZRC1 was induced when the intracellular zinc level was decreased. Zrc1 has six putative transmembrane domains and we determined that a Zrc1-GFP fusion protein was localized to the vacuolar membrane. The steady state level of intracellular zinc in a zrc1Delta mutant cultured in the zinc-abundant medium was lower than that in wild type. No distinct difference was observed in the basal activity of glyoxalase I, which is a cytosolic enzyme requiring zinc for catalytic function and is used here as a marker for cytosolic zinc-availability, between wild type and zrc1Delta mutant, although the activity was decreased much greater extent in the zrc1Delta mutant if the cells were exposed to the metal-limited medium. Similarly, the basal expression level of ZRC1-lacZ reporter gene in zrc1Delta mutant was the same as that in wild type; however, the fold of induction of ZRC1-lacZ expression in zrc1Delta mutant under the zinc-limited conditions was higher than that in the wild type. Based on these results, we present a tentative model for the function of Zrc1 as a mechanism to maintain the zinc homeostasis in yeast.  相似文献   

13.
The ZnTs are a growing family of proteins involved in lowering or sequestration of cellular zinc. Using fluorescent measurements of zinc transport we have addressed the mechanism of action of the most ubiquitously expressed member of this family, ZnT-1. This protein has been shown to lower levels of intracellular zinc though the mechanism has remained elusive. The rate of zinc efflux in HEK293 cells expressing ZnT-1 was not accelerated in comparison to control cells, suggesting that ZnT-1 may be involved in regulating influx rather than efflux of zinc. Co-expression of the L-type calcium channel, a major route for zinc influx, and ZnT-1 resulted in a 3-fold reduction in the rate of zinc influx in HEK293 and PC-12 cells, indicating that ZnT-1 modulates zinc permeation through this channel. Immunoblot analysis indicates that ZnT-1 expression does not modulate LTCC expression. Our findings therefore indicate that ZnT-1 modulates the permeation of cations through LTCC, thereby, regulating cation homeostasis through this pathway. Furthermore, ZnT-1 may play a role in cellular ion homeostasis and thereby confer protection against pathophysiological events linked to cellular Ca(2+) or Zn(2+) permeation and cell death.  相似文献   

14.
Voluntary exercise has been implicated to be beneficial for overall health and cognitive function in both clinical and experimental studies, but little is presently known about forced physical exercise on cognition and underlying molecular mechanism. We have used real-time RT-PCR to analyze gene expression in hippocampus, in the presence and absence of physical exercise, during spatial learning of rats in the Morris water maze. Our results show distinct zinc homeostasis-related gene expression profiles associated with learning and memory. Rats with physical exercise (EXP) showed a significant up-regulation of mRNA expression of zinc transporter-2 (ZnT-2), ZnT-4, ZnT-5, ZnT-6, and ZnT-7, metallothionein-1 (MT-1)–MT-3, divalent cation transporter-1, and Zrt-Irt-like proteins-7 in hippocampus when compared with control rats. In addition, spatial learning ability was improved in EXP rats compared with that in control group. This study provides the first comparative view of zinc homeostasis-related gene expression in hippocampus following forced physical exercise. These results suggested that forced physical exercise may provide a simple means to maintain brain function and promote learning capacity. Results of this study also suggest that exercise mobilizes zinc homeostasis-related gene expression profiles that would be predicted to benefit brain plasticity processes.  相似文献   

15.
The E1 glycoprotein of the avian coronavirus infectious bronchitis virus contains a short, glycosylated amino-terminal domain, three membrane-spanning domains, and a long carboxy-terminal cytoplasmic domain. We show that E1 expressed from cDNA is targeted to the Golgi region, as it is in infected cells. E1 proteins with precise deletions of the first and second or the second and third membrane-spanning domains were glycosylated, thus suggesting that either the first or third transmembrane domain can function as an internal signal sequence. The mutant protein with only the first transmembrane domain accumulated intracellularly like the wild-type protein, but the mutant protein with only the third transmembrane domain was transported to the cell surface. This result suggests that information specifying accumulation in the Golgi region resides in the first transmembrane domain, and provides the first example of an intracellular membrane protein that is transported to the plasma membrane after deletion of a specific domain.  相似文献   

16.
We report the cloning and characterization of a human cDNA predicted to encode a novel hydrophobic protein containing four transmembrane domains and a zinc metalloprotease motif, HEXXH, between the third and fourth transmembrane domains, and have named the molecule metalloprotease-related protein-1 (MPRP-1). The MPRP-1 gene was localized to chromosome 1-p32.3 by radiation hybrid mapping, and Northern blot analysis revealed expression in many organs, with strong expression in the heart, skeletal muscle, kidney and liver. Immunohistochemical analyisis showed that MPRP-1 was localized in the endoplasmic reticulum (ER), and not in the Golgi compartment. Fragments of DNA encoding a segment homologous to the HEXXH motif of MPRP-1 are widely found in bacteria, yeast, plants, and animals. These results suggest that the MPRP-1 may have highly conserved functions, such as in intracellular proteolytic processing in the ER.  相似文献   

17.
A new zinc ribbon gene (ZNRD1) is cloned from the human MHC class I region   总被引:6,自引:0,他引:6  
Fan W  Wang Z  Kyzysztof F  Prange C  Lennon G 《Genomics》2000,63(1):139-141
  相似文献   

18.
Breast milk normally contains adequate zinc to meet infant requirements up to six months of age; however, transient neonatal zinc deficiency has been documented in exclusively breastfed infants of women with low milk zinc concentration. This condition is not corrected by maternal zinc supplementation, supporting the speculation that it results from an inherited genetic condition. We identified a family in which two exclusively breast-fed infants developed zinc deficiency that was associated with low milk zinc concentration in both women. Sequencing of genomic DNA detected a mis-sense mutation (Ade-->Gua) that substitutes a conserved histidine at amino acid 54 with arginine (H54R) in SLC30A2 (ZnT-2) that is present in both affected subjects and several other siblings. Gene knockdown of SLC30A2 in mammary epithelial cells reduced zinc secretion, illustrating the role of ZnT-2 in zinc secretion from this cell type. Expression of the H54R mutant in human embryonic kidney-293 cells resulted in reduced zinc secretion as a consequence of perinuclear, aggresomal accumulation, whereas co-expression of the H54R mutant and wild-type ZnT-2 did not abrogate increased zinc secretion in cells overexpressing wild-type ZnT-2 alone. Together, these data provide evidence that low milk zinc concentration in some women is a consequence of a genetic disorder resulting from a mutation in SLC30A2 and can result in neonatal zinc deficiency if unrecognized. Further studies are needed to evaluate the incidence and penetrance of this mutation in the human population.  相似文献   

19.
Chu CC  Lee WC  Guo WY  Pan SM  Chen LJ  Li HM  Jinn TL 《Plant physiology》2005,139(1):425-436
The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flanked by an ATX1-like domain, and a C-terminal domain. The ATX1-like and C-terminal domains contain putative copper-binding motifs. We have investigated the function of this putative AtCCS gene and shown that a cDNA encoding the open reading frame predicted by The Arabidopsis Information Resource complemented only the cytosolic and peroxisomal CuZnSOD activities in the Atccs knockout mutant, which has lost all CuZnSOD activities. However, a longer AtCCS cDNA, as predicted by the Munich Information Centre for Protein Sequences and encoding an extra 66 amino acids at the N terminus, could restore all three, including the chloroplastic CuZnSOD activities in the Atccs mutant. The extra 66 amino acids were shown to direct the import of AtCCS into chloroplasts. Our results indicated that one AtCCS gene was responsible for the activation of all three types of CuZnSOD activity. In addition, a truncated AtCCS, containing only the central and C-terminal domains without the ATX1-like domain failed to restore any CuZnSOD activity in the Atccs mutant. This result indicates that the ATX1-like domain is essential for the copper chaperone function of AtCCS in planta.  相似文献   

20.
Zinc ions play an important role in testis development and spermatogenesis. Thus, nutritional zinc deficiency leads to aberrant testicular development, reduced spermatogenesis, and male sterility. The precise actions of zinc in mediating these functions and the mechanisms by which zinc is itself regulated in the testis, however, have not been adequately elucidated. We have assessed the distribution of the zinc-regulating proteins ZnT-1 and metallothionein I/II (MT I/II) in the mouse seminiferous tubule. Co-labeling for ZnT-1 and MT I/II demonstrated unique patterns of distribution for these proteins, with ZnT-1 present in Sertoli cells in addition to luminal spermatozoa and MT I/II restricted to spermatocytes. These findings were confirmed by dual-label immunofluorescence for ZnT-1 and the Sertoli cell marker, vimentin, and by immunoelectron microscopy. The differential expression patterns of ZnT-1 and MTs support the hypothesis that ZnT-1 and MTs play different roles in the regulation of intracellular zinc in this organ. The specific expression of ZnT-1 in the Sertoli cells, moreover, is consistent with their role in maintaining a nurturing, closely regulated environment for spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号