首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Zinc is essential for cell growth. Previous studies have shown that zinc concentration in breast cancer tissues is higher than that in normal breast tissues. Zinc cannot passively diffuse across cell membranes and specific zinc transporter proteins are required. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while ZIP transporters increase intracellular zinc. In this study, three human zinc transporter members: ZnT-1, ZIP2 and LIV-1 were chosen. We aimed to determine the effect of flaxseed lignan on the growth of ER-negative breast cancer cells in a nude mice model and observe the effect of flaxseed lignan on the regulation of the three zinc transporter in mRNA level. Nude mice were xenografted with human breast cancer cell line MDA-MB-231 and 6 weeks later were fed either the basal diet (BD) or BD supplemented with 10% FS and SDG for 5 weeks. The SDG levels were equivalent to the amounts in the 10% FS. RT-PCR was performed. Compared with the BD group, the tumor growth rate was significantly lower (P < 0. 05) in the FS and SDG group. ZnT-1 mRNA level in mammary tumor was increased in SDG group and decreased in FS group, but no significant difference was found. Extremely low amplification of ZIP2 from mRNA was detected, with no difference between the treatment groups. LIV-1 mRNA expression of SDG group increases compared with BD group. In FS group, it significantly increases nearly 9 times than that in BD group (P < 0. 005).  相似文献   

2.
The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU-145 and PC-3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 microM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.  相似文献   

3.
Research has investigated the participation of zinc transport proteins and metallothionein in the metabolism of this mineral. However, studies about the genetic expression of these proteins in obese patients are scarce. The study determined the expression of zinc transporter protein codifying genes (ZnT-1, Zip-1 and Zip-3) and of metallothionein in 55 obese women, aged between 20 and 56 years. The assessment of body composition was carried out using anthropometric measurements and bioelectrical impedance. Zinc intake was obtained by recording diet over a 3-day period, and the nutritional analysis was carried out using NutWin software version 1.5. The plasmatic and erythrocytary zinc were analyzed by atomic absorption spectrophotometry (λ = 213. 9 nm). The determination of mRNA expression of the zinc transporter proteins and metallothionein was carried out using blood, using the RT-PCR method. The mean values of body mass index were 37.9 ± 5.5 kg/m2. The average intake of zinc was 9.4 ± 2.3 mg/day. The analysis of the zinc plasma concentrations showed values of 58.4 ± 10.9 μg/dL. The mean values of zinc in the erythroytes were 38.7 ± 9.1 μg/g Hb. The metallothionein gene had a higher expression in the blood, when compared to zinc transporters ZnT-1, Zip-1, and Zip-3 (p = 0.01). The study shows that there are alterations in the biochemical parameters of zinc in obese patients assessed, as well as higher expression of the codifying gene metallothionein, when compared to the investigated zinc transporters.  相似文献   

4.
Zinc plays an important role in regulating the expression of brain-derived neurotrophic factor (BDNF) and its receptor in nervous system, but the correlation among Zn2+, zinc transporter, and BDNF in spinal cord injuries (SCI) is not fully understood. The purpose of this study was to investigate the expression of Zn2+, zinc transporter 1 (ZnT-1), and BDNF, as well as their correlation in spinal cord-injured rats. One hundred Wistar male rats were divided into two groups: sham-operated group (as control group) and model group. Spinal cord injury was induced in model groups by hemisection of T9 on the left side. Compared with the control group, the serum zinc levels in SCI model group were significantly decreased after surgery, but zinc concentrations in spinal cord were increased gradually. The mRNA levels of ZnT-1 and BDNF were significantly increased in SCI model group, and there is a positive correlation between them (Spearman rho = 0.381, P = 0.0204). The correlation found between BDNF and ZnT-1 allows us to speculate that these two factors may be physiologically co-regulated, which may provide an idea for the treatment of SCI.  相似文献   

5.
6.
7.
Short stature of children is affected by multiple factors. One of them is growth hormone (GH) deficiency. Growth hormone therapy can increase the final height of children with growth hormone deficiency. Zinc is found to induce dimerization and to enhance the bioactivity of human GH. Two gene families have been identified involved in zinc homeostasis. Previous studies in our laboratory have shown that Zip1, Zip2, Zip6, and ZnT1 mRNA were associated with zinc level in established human breast cancer in nude mice model; Zip8 was significantly lower in zinc-deficient Wistar rats in kidney. In this study, five zinc transporters: Zip1, Zip2, Zip6, Zip8, and ZnT1 were chosen. We aimed to investigate the mRNA expression of zinc transporters and to explore the relationship between zinc transporters and growth hormone in short stature children. Growth hormone provocation test is used to confirm the diagnosis of growth hormone deficiency. Six short children for the test were enrolled. At the same time, 15 sex- and age-matched normal children were enrolled as control. The expression levels of zinc transporters in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Zip1 and Zip2 mRNA expression positively correlated with growth hormone level (r?=?0.5133, P?=?0.0371; r?=?0.6719, P?=?0.0032); Zip8 mRNA expression negatively correlated with growth hormone level (r?=??0.5264, P?=?0.0285) during the test in short stature children. The average expression level of Zip2 was significantly higher and Zip6, Zip8 mRNA levels were significantly lower in short stature children than in health controls at 0 min (P?<?0.05, P?<?0.05).  相似文献   

8.
Zinc is essential for cell growth and is a co-factor for more than 300 enzymes, representing over 50 different enzyme classes. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while ZIP transporters increase intracellular zinc. Previous studies have shown that zinc concentration in breast cancer tissues is higher than that in normal breast tissues. However, the mechanisms involved and the relations to zinc transporters are still unknown. A series of zinc transporters are characterized in this article and several of that are emphasized in view of their unique tissue-specific expressions. Established human breast cancer in a nude mice model is used. With a dietary zinc supplement treatment, ZnT-1 mRNA expression in established human breast cancer is raised by 24%, and is nearly 2 times of that in basal diet. ZIP1, ZIP2 and LIV-1 mRNA are the same between two treatment groups. Moreover, no significant changes of these zinc transporters expressions are found between differential breast cancer cell lines in the nude mice model. This is the first report, which detects the zinc transporters expressions in established human breast cancer in nude mice model. These results lead to the constitutive expression and response to zinc in different tissues. In addition to that, ZnT-1 seems to have played an important role in zinc homeostasis, even in breast cancer.  相似文献   

9.
Zinc transporters, plasticity-related genes, and autophagic/apoptotic pathway both are associated with developmental seizure-induced brain excitotoxicity. Here, for the first time, we report the timing of expression pattern of zinc transporter 4 (ZnT-4), plasticity-related gene 3 (PRG-3), specific marker of autophagic vacuoles (LC3), and apoptotic marker caspase-3 in cerebral cortex following neonatal seizures. A seizure was induced by inhalant flurothyl daily in neonatal Sprague–Dawley rats from postnatal day 6 (P6). Rats were assigned into the recurrent-seizure group (RS, seizures induced in six consecutive days) and the control group. At 1.5 h, 3 h, 6 h, 12 h, 24 h, 48 h, 7 days, and 14 days after the last seizure, the mRNA level of the four genes in cerebral cortex was detected using RT–PCR method. At an early period 6 h or 12 h after the last seizures, both ZnT-4 and LC3 showed significantly up-regulated mRNA level while PRG-3 showed significantly down-regulated mRNA level at 12 h in cerebral cortex of RS group than those at the corresponding time point in control group. In the long-term time point of 7 days after the last seizure, the mRNA level of caspase-3 down-regulated; meanwhile, there was up-regulated mRNA level of LC-3 in RS group when compared to the control rats. This is the first report investigating the gene expression pattern of ZnT-4, PRG-3, LC-3, and caspase-3 in the developing brain. The results suggest that the disturbed expression pattern of the four genes might play a role in the pathophysiology of recurrent neonatal seizure-induced acute and long-term brain damage.  相似文献   

10.
A cDNA encoding a zinc transporter (ZnT-1) was isolated from a rat kidney cDNA expression library by complementation of a mutated, zinc-sensitive BHK cell line. This cDNA was used to isolate the homologous mouse ZnT-1 gene. The proteins predicted for these transporters contain six membrane-spanning domains, a large intracellular loop and a C-terminal tail. ZnT-1 is homologous to zinc and cobalt resistance genes of yeast. Immunocytochemistry with an antibody to a myc epitope added to the C-terminus of ZnT-1 revealed localization to the plasma membrane. Transformation of normal cells with a mutant ZnT-1 lacking the first membrane-spanning domain conferred zinc sensitivity on wild-type cells, suggesting that ZnT-1 functions as a multimer. Deletion of the first two membrane-spanning domains resulted in a non-functional molecule, whereas deletion of the C-terminal tail produced a toxic phenotype. Mutant cells have a slightly higher steady-state level of intracellular zinc and high basal expression of a zinc-dependent reporter gene compared with normal cells. Mutant cells have a lower turnover of 65Zn compared with normal cells or mutant cells transformed with ZnT-1. We propose that ZnT-1 transports zinc out of cells and that its absence accounts for the increased sensitivity of mutant cells to zinc toxicity.  相似文献   

11.
The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2′-deoxycytidine (AZA) increased intracellular (after 24 and 48 h) and total cellular zinc levels (after 48 h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48 h. MT mRNA was significantly enhanced after 24 h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.  相似文献   

12.
Zinc plays important roles in numerous cellular activities and physiological functions. Intracellular zinc levels are strictly maintained by zinc homeostatic mechanisms. Zinc concentrations in the prostate are the highest of all soft tissues and could be important for prostate health. However, the mechanisms by which the prostate maintains high zinc levels are still unclear. In addition, the response of the prostate to alterations in dietary zinc is unknown. The current study explored cellular zinc levels and zinc transporter expression profiles in the lobes of the prostate during dietary marginal zinc depletion. Rats were given either zinc-adequate (ZA, 30 mg Zn/kg) or marginal zinc-deficient (MZD, 5 mg Zn/kg) diet for 9 weeks. In addition, a subgroup of the MZD rats was supplemented with phytase (1,500 unit/kg diet) to improve zinc bioavailability. We found that both zinc concentrations and ZnT2 expression in the prostate dorsolateral lobes were substantially higher than in the ventral lobes (P < 0.05). Marginal zinc depletion significantly decreased ZnT2 expression in the dorsolateral lobes (P < 0.05), and phytase supplementation had a trend to increase ZnT2 expression. In addition, of all measured zinc transporters, only ZnT2 mRNA abundance was significantly correlated to the zinc concentrations in the dorsolateral lobe. No correlations were found between zinc transporter expression and zinc concentrations in the ventral lobes. These results indicate that ZnT2 may play a significant role in the maintenance of zinc homeostasis in the prostate.  相似文献   

13.
Inflammatory bowel disease (IBD) is a common chronic gastrointestinal disorder characterized by alternating periods of remission and active intestinal inflammation. Some studies suggest that antiinflammatory drugs are a promising alternative for treatment of the disease. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. Wistar rats (n = 25) were randomized into four groups, as follows: Group (1) Sham group: sham induced-colitis rats; Group (2) TNBS group: nontreated induced-colitis rats; Group (3) Lumiracoxib control group; and Group (4) Lumiracoxib-treated induced-colitis rats. Our results showed that rats from groups 2 and 4 presented similar histopathological damage and macroscopic injury in the distal colon as depicted by significant statistically differences (P < 0.01; P < 0.05) compared to the other two groups. Weak expression of COX-2 mRNA was detected in normal colon cells, while higher levels of COX-2 mRNA were detected in group 2 and group 4. Therapy with lumiracoxib reduced COX-2 expression by 20–30%, but it was still higher and statistically significant compared to data obtained from the lumiracoxib control group. Treatment with the selective COX-2 inhibitor lumiracoxib did not reduce inflammation-associated colonic injury in TNBS-induced experimental colitis. Thus, the use of COX-2 inhibitors for treating IBD should be considered with caution and warrants further experimental investigation to elucidate their applicability.  相似文献   

14.
Cyclooxygenase (COX), which have the isoforms of COX-1 and COX-2, is the key enzyme of prostaglandins biosynthesis. Especially, COX-2 is induced in inflammatory disease such as Diabetes Mellitus (DM). Resveratrol (RSV), a natural antioxidant, has a beneficial role in prevention of inflammatory disease. We investigated the changes of COX-1 and COX-2 mRNA expression and protein level in diabetic rat kidney after RSV treatment. Three months-old, 44 Wistar albino male rats, which were divided into six groups such as control group, sodium citrate buffer (sham control) group, diabetic group (DM), Dimethyl Sulfoxide induced control group, RSV treated sham control group (RSV) and RSV treated diabetic group (DM + RSV) were used for the study. Experimental diabetes was induced by intraperitoneal injection of 55 mg/kg Streptozotocin. After the induction of chronic diabetes 10 mg/kg per day RSV was administered intraperitoneally for 4 weeks. In this study. RSV has no significant effect on COX-1 mRNA expression in diabetic rat kidney (P > 0.05). Immunohistochemical study showed that COX-1 expression was slightly inhibited in RSV group and was not significantly supressed in DM + RSV group. When comparing control and treated groups, there were no significant differences in COX-2 mRNA or protein levels (P > 0.05). In conclusion, our results indicate that resveratrol do not significantly affect COX gene and protein expression. Therefore, different therapy strategies such as combination with other antidiabetic drugs may tried in STZ induced animal model for reducing diabetic symptoms and altering COX-1 and COX-2 mRNA or protein levels.  相似文献   

15.
16.
17.
ABSTRACT

Uric acid (UA) is a potential risk factor of the progression of chronic kidney disease (CKD). Recently, we reported that intestinal UA excretion might be enhanced via upregulation of the ATP-binding cassette transporter G2 (Abcg2) in a 5/6 nephrectomy (Nx) rat model. In the present study, we examined the mRNA and protein expressions of UA transporters, URAT1, GLUT9/URATv1, ABCG2 and NPT4 in the kidney and ileum in the same rat model. Additionally, we investigated the Abcg2 mRNA expression of ileum in hyperuricemic rat model by orally administering oxonic acid. Male Wistar rats were randomly assigned to three groups consisting of Nx group, oxonic acid-treated (Ox) group and sham-operated control group, and sacrificed at 8 weeks. Creatinine and UA were measured and the mRNA expressions of UA transporters in the kidney and intestine were evaluated by a real time PCR. UA transporters in the kidney sections were also examined by immunohistochemistry. Serum creatinine elevated in the Nx group whereas serum UA increased in the Ox group. Both the mRNA expression and the immunohistochemistry of the UA transporters were decreased in the Nx group, suggesting a marginal role in UA elevation in decreased kidney function. In contrast, the mRNA expression of Abcg2 in the ileum significantly increased in the Ox group. These results suggest that the upregulation of Abcg2 mRNA in the ileum triggered by an elevation of serum UA may play a compensatory role in increasing intestinal UA excretion.  相似文献   

18.
Voluntary exercise has been implicated to be beneficial for overall health and cognitive function in both clinical and experimental studies, but little is presently known about forced physical exercise on cognition and underlying molecular mechanism. We have used real-time RT-PCR to analyze gene expression in hippocampus, in the presence and absence of physical exercise, during spatial learning of rats in the Morris water maze. Our results show distinct zinc homeostasis-related gene expression profiles associated with learning and memory. Rats with physical exercise (EXP) showed a significant up-regulation of mRNA expression of zinc transporter-2 (ZnT-2), ZnT-4, ZnT-5, ZnT-6, and ZnT-7, metallothionein-1 (MT-1)–MT-3, divalent cation transporter-1, and Zrt-Irt-like proteins-7 in hippocampus when compared with control rats. In addition, spatial learning ability was improved in EXP rats compared with that in control group. This study provides the first comparative view of zinc homeostasis-related gene expression in hippocampus following forced physical exercise. These results suggested that forced physical exercise may provide a simple means to maintain brain function and promote learning capacity. Results of this study also suggest that exercise mobilizes zinc homeostasis-related gene expression profiles that would be predicted to benefit brain plasticity processes.  相似文献   

19.
Abstract

Zinc homeostasis is maintained by 24 tissue-specific zinc transporters which include ZnTs (ZnT1-10), ZIPs (ZIP1-14), in addition to metallothionein (MT). Current study aimed the role of zinc transporters in maintaining the basal levels of zinc in functionally contrasting tissue specific THP-1 (monocyte), RD (muscle), and Saos-2 (bone) cells. Zinc transporters expression was assessed by qRT-PCR. The mRNA levels of ZnTs (ZnT5-7 & ZnT9), ZIPs (ZIP6-10, ZIP13-14), and MT were significantly (p?<?0.05) higher in Saos-2 compared to THP-1 and RD. The present study suggests that distinct expression pattern of zinc transporters and metallothionein might be responsible for the differential zinc assimilation.  相似文献   

20.
Stephen M. Suru 《Biometals》2008,21(6):623-633
Cadmium (Cd) is a well-known nephrotoxicant inducing kidney damage via oxidative stress. Since kidney is the critical target organ of Cd toxicity, this study was designed to evaluate the protective effects of onion (Allium cepa L.) and garlic (Allium sativum L.) aqueous extracts on Cd-induced renal oxidative stress in male Wistar rats. The control group received double distilled water alone and Cd group was challenged with 3CdSO4 · 8H2O (as Cd) (1.5 mg/100 g bw/day per oral) alone. Extract-treated groups were pre-treated with varied doses (0.5 ml and 1.0 ml/100 g bw/day per oral) of onion and/or garlic extract for 1 week after which they were co-treated with Cd (1.5 mg/100 g bw/day per oral) for 3 weeks. The results showed that the levels of renal lipid peroxidation (LPO) and glutathione-S transferase (GST) were significantly (P < 0.001) increased in rats that received Cd alone relative to the control group. More so, the levels of renal glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and Na+/K+-ATPase were significantly (P < 0.001) decreased in rats that received Cd alone. Treatment of Cd-intoxicated rats with varied doses of onion and/or garlic extract significantly (P < 0.05) restored the alterations in these parameters relative to the group that received Cd alone. While treatment with high dose of onion extract exerted a significant dose-dependent restoration of these parameters, treatment with high dose of garlic elicited a pro-oxidant effect, relative to their respective low dose. Our study suggests that onion and garlic extracts may exert their protective effects via reduction in LPO and enhanced antioxidant defense. These extracts may, therefore, be useful nutritional option in alleviating Cd-induced renal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号