首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effect of water deficits on the water relations and stomatal responses of Helianthus annuus and Helianthus petiolaris were compared in plants growing in the glasshouse under controlled conditions. Unirrigated plants of both genotypes were subjected to two different stress rates in which predawn leaf water potentials declined steadily at either 0.15 MPa day?1 or 0.50 MPa day?1. In both genotypes water stress induced a gradual and similar decrease in leaf conductance from 1.6 to 0.3 cm s?1 as water potential decreased from-0.5 to-2.0 MPa. The relationship between leaf conductance and leaf water potential was not affected by the rate of stress development. Development of predawn leaf water potentials of-1.3 MPa had no significant effect on the relative water content at zero turgor, the apoplastic water content or the volumetric elastic modulus of whole leaves in either species, but decreased the osmotic potential at full turgor and zero turgor by 0.22 MPa and decreased the turgid weight: dry weight ratio from 10.6 to 8.4 in H. annuus, but not in H. petiolaris. In H. annuus leaves expanded during stress development, changes in the osmotic potential at full turgor induced by water deficits did not disappear on rewatering.  相似文献   

2.
Turner NC 《Plant physiology》1975,55(5):932-936
Concurrent measurements of evaporation, leaf conductance, irradiance, leaf water potential, and osmotic potential of maize (Zea mays L. cv. Pa602A) in soil at either high or low soil water potential were compared at several hours on two consecutive days in July. Hourly evaporation, measured on two weighing lysimeters, was similar until 1000 hours Eastern Standard Time, but thereafter evaporation from the maize in the dry soil was always less than that in the wet soil; before noon it was 62% and by midafternoon, only 35% of that in the wet soil. The leaf water potential, measured with a pressure chamber, was between −1.2 and −2.5 bars and between −6.8 and −8 bars at sunrise (about 0530 hours Eastern Standard Time) in the plants in the wet and dry soil, respectively, but decreased quickly to between −8 and −13 bars in the plants in the wet soil and to less than −15 bars in the plants in the dry soil by 1100 to 1230 hours Eastern Standard Time. At this time, the leaf conductance of all leaves was less than 0.1 cm sec−1 in the maize in the dry soil, whereas the conductance was 0.3 to 0.4 cm sec−1 in the leaves near the top of the canopy in the wet soil. The osmotic potential, measured with a vapor pressure osmometer, also decreased during the morning but to a smaller degree than leaf water potential, so that by 1100 to 1230 hours Eastern Standard Time the leaf turgor potential was 1 to 2 bars in all plants. Thereafter, leaf turgor potential increased, particularly in the plants in soil at a high water potential, whereas leaf water potential continued to decrease even in the maize leaves with partly closed stomata. Evidently maize can have values of leaf conductance differing 3- to 4- fold at the same leaf turgor potential, which suggests that stomata do not respond primarily to bulk leaf turgor potential. Evidence for some osmotic adjustment in the plants at low soil water potential is presented. Although the degree of stomatal closure in the maize in dry soil did not prevent further development of stress, it did decrease evaporation in proportion to the decrease in canopy conductance.  相似文献   

3.
Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress.  相似文献   

4.
The tepary bean ( Phaseolus acutifolius Gray var. latifolius ), a drought resistant species, was compared under water stress conditions with the more drought susceptible P. vulgaris L. cvs Pinto and White Half Runner (WHR). In order to better understand the basis for the superior drought resistance of tepary, this study was designed to determine the relationships among leaf water potential, osmotic potential, turgor potential, and relative water content (RWC).
Plants were prestressed by withholding irrigation water. These stress pretreatments changed the relation between leaf water potential and relative water content of both species so that prestressed plants had lower water potentials than controls at the same leaf RWC. Tepary had lower water potentials at given RWC levels than Pinto or WHR; this can account for part of the superior resistance of tepary. In all genotypes, prestressed plants maintained osmotic potentials approximately 0.2 MPa lower than controls. Tepary reached osmotic potentials that were significantly lower (0.15 to 0.25 MPa) than Pinto or WHR. Both control and prestressed tepary plants had 0.05 to 0.25 MPa more turgor than Pinto or WHR at RWC values between 65 and 80%. Both prestressed and control tepary plants had greater elasticity (a lower elastic modulus) than Pinto or WHR. This greater turgor of tepary at low RWC values could be caused by several factors including greater tissue elasticity, active accumulation of solutes, or greater solute concentration.
Tepary had significantly lower osmotic potentials than the P. vulgaris cultivars, but there was little difference in osmotic potential between Pinto and WHR. Knowledge of differences in osmotic and turgor potentials among and within species could be useful in breeding for drought resistance in Phaseolus.  相似文献   

5.
Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Ψπ) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Ψπ at the turgor loss point, the active Ψπ depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.  相似文献   

6.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

7.
Plants of Sedum rubrotinctum R. T. Clausen were studied in a green-house over a 2-year period without watering. Only the apical leaves survived and were turgid at the end of the experiment. The midday leaf water potential of these apical leaves was −1.20 megapascals, while the leaf water potential of comparable leaves on well-watered control plants was −0.20 megapascals. The unwatered plants appear to have maintained turgor by means of an osmotic adjustment. After 2 years without water the plants no longer exhibited a nocturnal accumulation of titratable acidity. However, the daytime levels of titratable acidity of the unwatered plants were more than 2-fold greater than the levels in well-watered control plants. Well-watered plants of S. rubrotinctum exhibited seasonal shifts in biomass stble carbon isotope ratios, indicating a greater proportion of day versus night CO2 uptake in the winter than in the summer. The imposition of water stress prevented the expression of this seasonal rhythm and restricted the plants to dark CO2 uptake.  相似文献   

8.
Detrimental effect of rust infection on the water relations of bean   总被引:3,自引:0,他引:3       下载免费PDF全文
Bean plants (Phaseolus vulgaris L.) infected with the rust Uromyces phaseoli became unusually susceptible to drought as sporulation occurred. Under the conditions used (1,300 ft-c, 27 C, and 55% relative humidity) such plants wilted at soil water potentials greater than −1 bar, whereas healthy plants did not wilt until the soil water potential fell below −3.4 bars. Determinations of leaf water and osmotic potentials showed that an alteration in leaf osmotic potential was not responsible for the wilting of diseased plants. When diffusive resistance was measured as a function of decreasing leaf water content, the resistance of healthy leaves increased to 50 sec cm−1 by the time relative water content decreased to 70%, whereas the resistance of diseased leaves remained less than 8 sec cm−1 down to 50% relative water content. Apparently, water vapor loss through cuticle damaged by the sporulation process, together with the reduction in root to shoot ratio which occurs in diseased plants, upset the water economy of the diseased plant under mild drought conditions.  相似文献   

9.
Stress-induced osmotic adjustment in growing regions of barley leaves   总被引:19,自引:11,他引:8       下载免费PDF全文
Young barley seedlings were stressed using nutrient solutions containing NaCl or polyethylene glycol and measurements were made of leaf growth, water potential, osmotic potential and turgor values of both growing (basal) and nongrowing (blade) tissues. Rapid growth responses similar to those noted for corn (Plant Physiology 48: 631-636) were obtained using either NaCl or polyethylene glycol treatments by which exposure of seedlings to solutions with water potential values of −3 to −11 bars effected an immediate cessation of leaf elongation with growth resumption after several minutes or hours. Latent periods were increased and growth resumption rates were decreased as water potential values of nutrient solutions were lowered. In unstressed transpiring seedlings, water potential and osmotic potential values of leaf basal tissues were usually −6 to −8 bars, and −12 to −14 bars, respectively. These tissues began to adjust osmotically when exposed to any of the osmotic solutions, and hourly reductions of 1 to 2 bars in both water potential and osmotic potential values usually occurred for the first 2 to 4 hours, but reduction rates thereafter were lower. When seedlings were exposed to solutions with water potential values lower than those of the leaf basal tissues, growth resumed about the time water potential values of those tissues fell to that of the nutrient solution. After 1 to 3 days of seedling exposure to solutions with different water potential values, cumulative leaf elongation was reduced as the water potential values of the root medium were lowered. Reductions in water potential and osmotic potential values of tissues in leaf basal regions paralleled growth reductions, but turgor value was largely unaffected by stress. In contrast, water potential, osmotic potential, and turgor values of leaf blades were usually changed slightly regardless of the degree and duration of stress, and blade water potential values were always higher than water potential values of the basally located cells. It is hypothesized that blades have high water potential values and are generally unresponsive to stress because water in most of the mesophyll cells in this area does not exchange readily with water present in the transpiration stream.  相似文献   

10.
A field experiment was conducted with a non-irrigated waterstress treatment and an irrigated control using four sorghum(Sorghum bicolor L. Moench) cultivars. We investigated the effectsof water deficits on leaf water relations, osmotic adjustment,stomatal conductance, cuticular conductance, cell membrane stability(CMS) measured by the polyethylene glycol (PEG) test, epicuticularwax load (EWL), cytoplasmic lipid content, solute concentrationin cell sap, and growth. Osmotic adjustment was observed under water deficit conditions.Lower osmotic potential enabled plants to maintain turgor anddecreased the sensitivity of turgor-dependent processes. Sugarand K were identified as the major solutes contributing to osmoticpotential in sorghum. Sugar and K concentrations in cell sapincreased by 37·4% and 27%, respectively, under waterdeficit conditions in favour of decreasing osmotic potential.Stomatal conductance and cuticular conductance were lower inthe non-irrigated plants. A wide range in CMS among four cultivarswas observed. CMS increased with increasing water deficits.EWL increased on leaves of water deficient plants and was positivelycorrelated with cuticular conductance and CMS. Membrane phospholipidcontent increased in water-stressed plants. CMS as measured by the PEG test, was influenced by EWL, cuticularthickness, and osmotic concentration of leaf tissues. The cultivarswhich maintained higher CMS, higher EWL, lower cuticular conductance,higher turgor and higher osmotic adjustment under water deficitconditions were identified as drought tolerant. Key words: Sorghum bicolor, cell membrane stability, leaf water relationsosmotic adjustment, water stress  相似文献   

11.
The effects of water stress on pressure differences and 14C-assimilate translocation in sieve tubes of squirting cucumber Ecballium elaterium A. Rich were studied. Water stress was induced by transfer of plants from culture solution to a polyethylene glycol 6,000 solution having an osmotic potential of −18.2 atm. Sieve tube turgor, turgor differences between source and sink, and translocation rate were decreased. After 260 minutes of translocation, only 19% of the total fixed 14CO2 had moved out of the leaf, compared to the control value of 62% after the same period of time. The results suggest that water stress slows translocation by lowering sieve tube turgor differences, which are essential for the pressure flow mechanism of conduction.  相似文献   

12.
The design of a simple instrument to monitor leaf expansionin grasses is described. The instrument was used to comparethe effects of water stress on leaf extension of two cultivarsof maize and sorghum. The effect of withholding water for 3days was an appreciable reduction in the rate of leaf expansionin both plants, particularly during the light period. In well-wateredplants of both species, leaf extension continued at a steadyrate even when leaf turgor fell to around 0.1 MPa. In water-stressedmaize plants, leaf turgor during the light period fell to zeroand leaf growth ceased. When turgor was restored, followingstomatal closure, leaf extension resumed at a slow rate. Inunwatered sorghum plants, leaf turgor remained at a value greaterthan 0.1 MPa but the rate of leaf extension was significantlyreduced. The reduction in leaf turgor in the unwanted plantsresulted partly from an increase in solute potential. Zea mays L, maize, Sorghum bicolor L, leaf expansion, leaf turgor, water stress  相似文献   

13.
During the first hours of chilling, bean (Phaseolus vulgaris L., cv Mondragone) seedlings suffer severe water stress and wilt without any significant increase in leaf abscisic acid (ABA) content (P. Vernieri, A. Pardossi, F. Tognoni [1991] Aust J Plant Physiol 18: 25-35). Plants regain turgor after 30 to 40 h. We hypothesized that inability to rapidly synthesize ABA at low temperatures contributes to chilling-induced water stress and that turgor recovery after 30 to 40 h is mediated by changes in endogenous ABA content. Entire bean seedlings were subjected to long-term (up to 6 d) chilling (3°C, 0.2-0.4 kPa vapor pressure deficit, 100 μmol·m−2·s−1 photosynthetic photon flux density, continuous fluorescent light). During the first 24 h, stomata remained open, and plants rapidly wilted as leaf transpiration exceeded root water absorption. During this phase, ABA did not accumulate in leaves or in roots. After 24 h, ABA content increased in both tissues, leaf diffusion resistance increased, and plants rehydrated and regained turgor. No osmotic adjustment was associated with turgor recovery. Following turgor recovery, stomata remained closed, and ABA levels in both roots and leaves were elevated compared with controls. The application of ABA (0.1 mm) to the root system of the plants throughout exposure to 3°C prevented the chilling-induced water stress. Excised leaves fed 0.1 mm ABA via the transpiration stream had greater leaf diffusion resistance at 20 and 3°C compared with non-ABA fed controls, but the amount of ABA needed to elicit a given degree of stomatal closure was higher at 3°C compared with 20°C. These findings suggest that endogenous ABA may play a role in ameliorating plant water status during chilling.  相似文献   

14.
The daily (24 hour) changes in carbon balance, water loss, and leaf area of whole sorghum plants (Sorghum bicolor L. Moench, cv BTX616) were measured under controlled environment conditions typical of warm, humid, sunny days. Plants were either (a) irrigated frequently with nutrient solution (osmotic potential −0.08 kilojoules per kilogram = −0.8 bar), (b) not irrigated for 15 days, (c) irrigated frequently with moderately saline nutrient (80 millimoles NaCl + 20 millimoles CaCl2·2H2O per kilogram water, osmotic potential −0.56 kilojoules per kilogram), or (d) preirrigated with saline nutrient and then not irrigated for 22 days.

Under frequent irrigation, salt reduced leaf expansion and carbon gain, but water use efficiency was increased since the water loss rate was reduced more than the carbon gain. Water stress developed more slowly in the salinized plants and they were able to adjust osmotically by a greater amount. Leaf expansion and carbon gain continued down to lower leaf water potentials.

Some additional metabolic cost associated with salt stress was detected, but under water stress this was balanced by the reduced cost of storing photosynthate rather than converting it to new biomass. Reirrigation produced a burst of respiration associated with renewed synthesis of biomass from stored photosynthate.

It is concluded that although irrigation of sorghum with moderately saline water inhibits plant growth in comparison with irrigation with nonsaline water, it also inhibits water loss and allows a greater degree of osmotic adjustment, so that the plants are able to continue growing longer and reach lower leaf water potentials between irrigations.

  相似文献   

15.
Shoot water relations and morphological responses to drought preconditioning were studied by subjecting 5-month-old seedlings of three provenances of Eucalyptus globulus to different water regimes for 36 days in a greenhouse pot study. Moderately stressed plants were watered every 6 days and severely stressed plants were watered every 9 days. Control plants were watered daily. Drought cycles induced significant changes in morphological and physiological characteristics. Preconditioned seedlings were smaller in size, root collar diameter, height, and leaf area than control seedlings. Shoot/root ratio was not affected by drought. Osmotic potential at full turgor (ψπFT) and osmotic potential at turgor loss point (ψπTLP) were significantly lower and the magnitude of osmotic adjustment was significantly higher under the severe than under the moderate stress treatment. In severely stressed plants a decrease of turgid mass/dry mass contributed to osmotic adjustment. In a subsequent acclimation test, preconditioned seedlings showed higher values of stomatal conductance, predawn relative water content and water potential and lower mortality than control plants. These variables were significantly related to ψπFT. We assume that the reduced leaf area and osmotic adjustment observed in preconditioned seedlings contributed to drought acclimation in the selected E. globulus provenances leading to better rates of gas exchange and improved water status than non-conditioned plants. Provenances exhibited differences in their responses to drought, albeit mainly morphological differences. E. globulus subsp. bicostata from Tumbarumba grew more quickly (larger diameter and height relative growth rate) than the other provenances, implying a greater ability to tolerate water stress. It can be expected that preconditioned seedlings will display greater tolerance of water stress than non-conditioned plants and perform better during early establishment (higher survival and early growth).  相似文献   

16.
Behavior of Corn and Sorghum under Water Stress and during Recovery   总被引:10,自引:9,他引:1       下载免费PDF全文
Corn (Zea mays L.) and sorghum (Sorghum vulgare, Pers.) plants were grown in a vermiculite-gravel mixture in controlled environment chambers until they were 40 days old. Water was withheld until they were severely wilted, and they were then rewatered. During drying and after rewatering stomatal resistance was measured with a diffusion porometer each morning, and water saturation deficit and water potential were measured on leaf samples. The average resistance of the lower epidermis of well watered plants was lower for corn than for sorghum. When water stress developed, the stomata began to close at a higher water potential in corn than in sorghum. The stomata of both species began to reopen normally soon after the wilted plants were rewatered, and on the 2nd day the leaf resistances were nearly as low as those of the controls. The average leaf water potential of well watered corn was −4.5 bars; that of sorghum, −6.4 bars. The lowest leaf water potential in stressed corn was −12.8 bars at a water saturation deficit of 45%. The lowest leaf water potential in stressed sorghum was −15.7 bars, but the water saturation deficit was only 29%. At these values the leaves of both species were tightly rolled or folded and some injury was apparent. Thus, although the average leaf resistance of corn is little lower than that of sorghum, corn loses much more of its water before the stomata are fully closed than does sorghum. The smaller reduction in water content of sorghum for a given reduction in leaf water potential is characteristic of drought-resistant species.  相似文献   

17.
The daily (24-hour) carbon balances of whole sorghum plants (Sorghum bicolor L. Moench cv BTX616) were continuously measured throughout 15 days of water stress, followed by rewatering and 4 more days of measurements. The plants were grown under controlled environment conditions typical of warm, humid, sunny days. During the first 12 days, osmotic potentials decreased in parallel with decreased water potentials to maintain pressure potentials near 0.5 kilojoules per kilogram (5 bars). Immediately before rewatering on day 15, the water potential was −3.0 kilojoules per kilogram. Osmotic adjustment at this point was 1.0 kilojoules per kilogram, as measured by the decrease in the water potential at zero turgor from its initial value of −1.4 kilojoules per kilogram.

Gross input of carbon was less but the fraction retained was greater because a smaller fraction was lost through respiration in stressed plants than in unstressed plants. This was attributed to a lower rate of biomass synthesis, and conversely a higher rate of storage of photosynthate, due to inhibition of leaf expansion. The reduction in the cost associated with biomass synthesis more than balanced any metabolic cost of osmotic adjustment. The net daily gain of carbon was always positive in the stressed plants.

There was a large burst of respiration on rewatering, due to renewed synthesis of biomass from stored photosynthate. Over the next 3 days, osmotic adjustment was lost and the daily carbon balance returned to that typical of nonstressed plants. Thus, osmotic adjustment allowed the stressed plants to accumulate biomass carbon throughout the cycle, with little additional metabolic cost. Carbon stored during stress was immediately available for biomass synthesis on rewatering.

  相似文献   

18.
The relative magnitude of adjustment in osmotic potential (ψs) of water-stressed cotton (Gossypium hirsutum L.) leaves and roots was studied using plants raised in pots of sand and grown in a growth chamber. One and three water-stress preconditioning cycles were imposed by withholding water, and the subsequent adjustment in solute potential upon relief of the stress and complete rehydration was monitored with thermocouple psychrometers. Both leaves and roots exhibited a substantial adjustment in ψs in response to water stress with the former exhibiting the larger absolute adjustment. The osmotic adjustment of leaves was 0.41 megapascal compared to 0.19 megapascal in the roots. The roots, however, exhibited much larger percentage osmotic adjustments of 46 and 63% in the one and three stress cycles, respectively, compared to 22 and 40% in the leaves in similar stress cycles. The osmotically adjusted condition of leaves and roots decreased after relief of the single cycle stress to about half the initial value within 3 days, and to the well-watered control level within 6 days. In contrast, increasing the number of water-stress preconditioning cycles resulted in significant percentage osmotic adjustment still being present after 6 days in roots but not in the leaves. The decrease in ψs of leaves persisted longer in field-grown cotton plants compared to plants of the same age grown in the growth chamber. The advantage of decreased ψs in leaves and roots of water-stressed cotton plants was associated with the maintenance of turgor during periods of decreasing water potentials.  相似文献   

19.
The effects of water stress on water potential components, tissue water content, mean elastic modulus and the osmoregulation capacity of olive (Olea europaea L. cv. Coratina) leaves was determined. Artificial rehydration of olive leaf tissues altered the P-V relationships so that a plateau phenomenon occurred. Points in the P-V curve in the region affected by the plateau, generally up to –0.5 MPa, were corrected for all the samples analyzed. In the corrected P-V relationship, an osmotic adjustment was found in drought-stressed leaf tissues. Osmotic potentials at full turgor (0 (sat)) and osmotic potential at turgor-loss (0 (TVT)) decreased from –2.06±0.01 MPa and –3.07±0.16 MPa in controls to –2.81±0.03 MPa and –3.85±0.12 MPa in most stressed plants. Osmotic adjustment values obtained from the P-V curves agreed with those obtained using an osmometer. An active osmotic adjustment of 1.42 MPa was also observed in 1–4 mm- diameter roots. Mannitol is the main carbohydrate involved in osmotic potential decrease in all treatments. The maximum elastic modulus increased from 11.6±0.95 MPa in the controls to 18.6±0.61 MPa in the most stressed plants.  相似文献   

20.
The water content-water potential relation in stressed and unstressed cassava ( Man-ihot species) was examined to ascertain (i) the magnitude of osmotic adjustment in response to water stress and (ii) the mechanisms of such adjustments.
Water stress resulted in a displacement of the water content-potential relation such that at any leaf water potential the water content was higher in the stressed plants. The osmotic potentials of turgid leaves (100% relative water content) were -0.97 and -1.00 MPa in the unstressed cultivars CMC 9 and MCOL 113 respectively. In the stressed plants, the values were-1.13 MPa (CMC 9) and-1.14 MPa (MCOL 113). The 0.14 to 0.16 MPa osmotic potential difference between the stressed and unstressed plants suggests that a stress-induced osmotic adjustment occurred in both cultivars. The biiSk volumetric elastic moduli at turgor pressures above 0.10 MPa were 9.84 MPa (CMC 9) and 13.58 MPa (MCOL 113) in the unstressed plants. Tbe higher values found in the stressed plants, 14.56 MPa in CMC 9 and 16.91 MPa in MCOL 113, suggest a stress-induced decrease in cell wall elasticity. Hence, the observed shift in the wafer content-potential relations in the cassava involved both an osmotic adjustment and a decrease in cell wall elasticity. Increasing the number of stress cycles per plant did not cause a further displacement of the water content-potential curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号