首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of epinephrine on alpha-methyl-D-glucopyranoside uptake in renal proximal tubule cells. Epinephrine has known to be a very important factor in the regulation of renal sodium excretion. However, the effect of epinephrine on Na+/glucose cotransporter was not fully elucidated. Thus, we examined effect of epinephrine on alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signal pathways in the primary cultured rabbit renal proximal tubule cells (PTCs). Epinephrine inhibited alpha-MG uptake in a time- and dose-dependent manner and also decreased SGLT1 and SGLT2 protein level. Both phentolamine and propranolol completely prevented epinephrine-induced inhibition of alpha-MG uptake. The epinephrine-induced inhibition of alpha-MG uptake was blocked by SQ-22536 or myristoylated PKA inhibitor amide 14-22 and epinephrine increased the intracellular cAMP content. In western blotting analysis, epinephrine increases phosphorylation of p44/42 and p38 MAPKs and PD 98059 or SB 203580 blocked the effect of epinephrine. In addition, epinephrine increased AA release and PGE2 production and effects of epinephrine on alpha-MG uptake and AA release were blocked by staurosporine and bisindolylmaleimide I or mepacrine and AACOCF3. Indeed, epinephrine translocated PKC or cPLA2 from cytosol to membrane fraction. In conclusion, epinephrine partially inhibits the alpha-MG uptake through PKA, PKC, p44/42, p38 MAPK, and cPLA2 pathways in the PTCs.  相似文献   

2.
Extracellular ATP plays an important role in the regulation of renal function. However, the effect of ATP on the Na+-glucose cotransporters (SGLTs) has not been elucidated in proximal tubule cells (PTCs). Therefore, this study was performed to examine the action of ATP on SGLTs and their related signal pathways in primary cultured rabbit renal PTCs. ATP increased [14C]--methyl-D-glucopyranoside (-MG) uptake in a time-dependent (>1 h) and dose-dependent (>10–6 M) manner. ATP stimulated -MG uptake by increasing in Vmax without affecting Km. ATP-induced increase of -MG uptake was correlated with the increase in both SGLT1 and SGLT2 protein expression levels. ATP-induced stimulation of -MG uptake was blocked by suramin (nonspecific P2 receptor antagonist), RB-2 (P2Y receptor antagonist), and MRS-2179 (P2Y1 receptor antagonist), suggesting a role for the P2Y receptor. ATP-induced stimulation of -MG uptake was blocked by pertussis toxin (PTX, a Gi protein inhibitor), SQ-22536 (an adenylate cyclase inhibitor), and PKA inhibitor amide 14-22 (PKI). ATP also increased cAMP formation, which was blocked by PTX and RB-2. However, pretreatment of adenosine deaminase did not block ATP-induced cAMP formation. In addition, ATP-induced stimulation of -MG uptake was blocked by SB-203580 (p38 MAPK inhibitor), but not by PD-98059 (p44/42 MAPK inhibitor) or SP-600125 (JNK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK. In conclusion, ATP increases -MG uptake via cAMP and p38 MAPK in renal PTCs. adenosine 5'-triphosphate; mitogen-activated protein kinase  相似文献   

3.
The precise signal that regulates fructose transport in renal proximal tubule cells (PTCs) under high glucose conditions is not yet known although fructose has been recommended as a substitute for glucose in the diets of diabetic people. Thus, we investigated that effect of high glucose on fructose uptake and its signaling pathways in primary cultured rabbit renal PTCs. Glucose inhibited the fructose uptake in a time- and dose-dependent manner. A maximal inhibitory effect of glucose on fructose uptake was observed at 25 mM glucose after 48 h, while 25 mM mannitol and l-glucose did not affect fructose uptake. Indeed, 25 mM glucose for 48 h decreased GLUT5 protein level. Thus, the treatment of 25 mM glucose for 48 h was used for this study. Glucose-induced (25 mM) inhibition of fructose uptake was blocked by pertussis toxin (PTX), SQ-22536 (an adenylate cyclase inhibitor), and myristoylated amide 14-22 (a protein kinase A inhibitor). Indeed, 25 mM glucose increased the intracellular cAMP content. Furthermore, 25 mM glucose-induced inhibition of fructose uptake was prevented by neomycin or U-73122 (phospholipase C inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase C inhibitors). In fact, 25 mM glucose increased the total PKC activity and translocation of PKC from the cytosolic to membrane fraction. In addition, PD 98059 (a p44/42 mitogen-activated protein kinase (MAPK) inhibitor) but not SB 203580 (a p38 MAPK inhibitor) and mepacrine or AACOCF3 (phospholipase A2 inhibitors) blocked 25 mM glucose-induced inhibition of fructose uptake. Results of Western blotting using the p44/42 MAPK and GLUT5 antibodies were consistent with the results of uptake experiments. In conclusion, high glucose inhibits the fructose uptake through cAMP, PLC/PKC, p44/42 MAPK, and cytosolic phospholipase A2 (cPLA2) pathways in the PTCs.  相似文献   

4.
The effect of EGF on (14)C-alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signaling pathways were examined in primary cultured rabbit renal proximal tubule cells (PTCs). Epidermal growth factor (EGF) (50 ng/ml) was found to inhibit alpha-MG uptake, a distinctive proximal tubule marker. The EGF effect was blocked by AG1478 (an EGF receptor antagonist) or genistein and herbimycin (tyrosine kinase inhibitors), respectively. In addition, the EGF-induced inhibition of alpha-MG uptake was blocked by neomycin and U73122 (phospholipase C inhibitors) as well as staurosporine, H-7, and bisindolylmaleimide I (protein kinase C inhibitors). EGF was also observed to increase inositol phosphate formation. Furthermore, both the EGF-induced inhibition of alpha-MG uptake and increase of arachidonic acid (AA) release were blocked by AACOCF(3) (a cytosolic phospholipase A(2) inhibitor), indomethacin (a cyclooxygenase inhibitor), and econazole (a cytochrome P-450 epoxygenase inhibitor). We examined the involvement of mitogen-activated protein kinases (MAPKs) in mediating the effect of EGF on alpha-MG uptake. Indeed, EGF increased phosphorylation of p44/p42 MAPK and the EGF-induced inhibition of alpha-MG uptake as well as the stimulatory effect of EGF on AA release was blocked by PD 98059 (a p44/42 MAPK inhibitor), suggesting a causal relationship. However, inhibitors of PKC also prevented the EGF-induced increase of AA release. In conclusion, EGF partially inhibited alpha-MG uptake via PLC/PKC, p44/42 MAPK, and PLA(2) signaling pathways.  相似文献   

5.
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation.  相似文献   

6.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

7.
A growing body of evidence implicates albumin has an important regulatory function in renal proximal tubule cells (PTCs). In present study, the effect of bovine serum albumin (BSA) on 14C-alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signal molecules were examined in the primary cultured rabbit renal PTCs. BSA significantly increased uptake of alpha-MG, a distinctive proximal tubule marker, as well as expression level of Na+/glucose cotransporters (SGLT1 and SGLT2) proteins. The BSA-induced increase of alpha-MG uptake was completely blocked by actinomycin D and cycloheximide. Neomycin or U 73122 (PLC inhibitors), BAPTA/AM or TMB-8 (intracellular Ca2+ mobilization inhibitors) completely abolished BSA-induced increase of alpha-MG uptake. BSA significantly increased IPs accumulation, but did not affect Ca2+ uptake. Effect of BSA on alpha-MG uptake was blocked by PD 98059, but did not SB 203580. BSA increased phosphorylation of p44/42 mitogen activated protein kinase (MAPK) in a time-dependent manner. NAC or catalase (antioxidants) significantly blocked BSA-induced increase of H2O2 formation and alpha-MG uptake. BSA activated NF-kappaB translocation into nucleus. PDTC, SN50, and TLCK (NF-kappaB inhibitors) also completely blocked BSA-induced increase of alpha-MG uptake, NF-kappaB p65 and phospho IkappaB-alpha activation. In conclusion, BSA stimulates alpha-MG uptake and its action is partially correlated with PLC, MAPK, or NF-kappaB signal molecules in primary cultured renal PTCs.  相似文献   

8.
It has been reported that epidermal growth factor (EGF) and EGF receptor were highly expressed in embryo, suggesting that the EGF system is related to early embryo development in an autocrine and/or paracrine manner. Glucose becomes the preimplantation exogenous energy substrate and enters the blastocyst via glucose transporters. Thus, the effect of EGF on [3H]-2-deoxyglucose (2-DG) uptake and its related signaling pathways were examined in mouse embryonic stem (ES) cells. EGF significantly increased 2-DG uptake in time- and concentration- dependent manner (>12 hr, >10 ng/ ml) and increased mRNA and protein level of glucose transporter 1 (GLUT1) compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of EGF on 2-DG uptake. EGF-induced increase of 2-DG uptake was blocked by AG1478 (EGF receptor tyrosine kinase blocker), genistein or herbimycin (tyrosine kinase inhibitors). In addition, EGF effect was blocked by neomycin and U 73122 [phospholipase C (PLC) inhibitors] as well as staurosporine and bisindolylmaleimide I [protein kinase C (PKC) inhibitors]. EGF was also observed to increase inositol phosphates (IPs) formation and activate a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PLC and PKC. SB 203580 [p38 mitogen activated protein kinase (MAPK) inhibitor] or PD 98059 (p44/42 MAPKs inhibitor) blocked EGF-induced increase of 2-DG uptake. EGF also increased phosphorylation of p38 MAPK and p44/42 MAPKs, which was blocked by genistein or bisindolylmaleimide I, respectively. In conclusion, EGF partially increased 2-DG uptake via PKC, p38 MAPK, and p44/42 MAPKs in mouse ES cells.  相似文献   

9.
ATP is an extracellular signaling molecule that activates specific G protein-coupled P2Y receptors in most cell types to mediate diverse biological effects. ATP has been shown to activate the phospholipase C (PLC)/diacylglycerol/protein kinase C (PKC) pathway in various systems. However, little is known about the signaling events in human endometrial stromal cells (hESCs). The objective of this study was to examine the presence of the P2Y2 receptor and the effects of exogenous ATP on the intracellular mitogen-activated protein kinases (MAPKs) signaling pathway, immediate early genes expression, and cell viability in hESCs. Western blot analysis, gene array analysis, and MTT assay for cell viability were performed. The current study demonstrated the existence of the P2Y2 purinergic receptor in hESCs. UTP and ATP activated MAPK in a dose- and time-dependent manner. Suramin (a P2-purinoceptor antagonist), neomycin (a PLC inhibitor), staurosporin (a PKC inhibitor), and PD98059 (a MEK inhibitor) significantly attenuated the ATP-induced activation of MAPK. ATP activated ERK1/2 and induced translocation of activated ERK1/2 to the nucleus. The gene array for 23 genes associated with members of the mitogenic pathway cascade and immediate early genes revealed that the expression of early growth response 1 was increased. In addition, MTT assay revealed an inhibition effect of ATP on cell viability. ATP activated MAPKs through the P2Y2 purinoceptor/PLC/PKC/ERK signaling pathway and induced translocation of ERK1/2 into the nucleus. Further, ATP induced the expression of early growth response 1 and inhibited cell viability in hESCs.  相似文献   

10.
The membrane receptors for the gibbon ape leukemia retrovirus and the amphotropic murine retrovirus serve normal cellular functions as sodium-dependent phosphate transporters (Pit-1 and Pit-2, respectively). Our earlier studies established that activation of protein kinase C (PKC) by treatment of cells with phorbol 12-myristate 13-acetate (PMA) enhanced sodium-dependent phosphate (Na/Pi) uptake. Studies now have been carried out to determine which type of Na/Pi transporter (Pit-1 or Pit-2) is regulated by PKC and which PKC isotypes are involved in the up-regulation of Na/Pi uptake by the Na/Pi transporter/viral receptor. It was found that the activation of short term (2-min) Na/Pi uptake by PMA is abolished when cells are infected with amphotropic murine retrovirus (binds Pit-2 receptor) but not with gibbon ape leukemia retrovirus (binds Pit-1 receptor), indicating that Pit-2 is the form of Na/Pi transporter/viral receptor regulated by PKC. The PKC-mediated activation of Pit-2 was blocked by pretreating cells with the pan-PKC inhibitor bisindolylmaleimide but not with the conventional PKC isotype inhibitor G? 6976, suggesting that a novel PKC isotype is required to regulate Pit-2. Overexpression of PKCepsilon, but not of PKCalpha, -delta, or -zeta, was found to mimic the activation of Na/Pi uptake. To further establish that PKCepsilon is involved in the regulation of Pit-2, cells were treated with PKCepsilon-selective antisense oligonucleotides. Treatment with PKCepsilon antisense oligonucleotides decreased the PMA-induced activation of Na/Pi uptake. These results indicate that PMA-induced stimulation of Na/Pi uptake by Pit-2 is specifically mediated through activation of PKCepsilon.  相似文献   

11.
Homocysteine sulfinic acid (HCSA) is a homologue of the amino acid cysteine and a selective metabotropic glutamate receptor (mGluR) agonist. However, the metabolic role of HCSA is poorly understood. In this study, we showed that HCSA and glutamate stimulated glucose uptake in C2C12 mouse myoblast cells and increased AMP-activated protein kinase (AMPK) phosphorylation. RT-PCR and Western blot analysis revealed that C2C12 expresses mGluR5. HCSA transiently increased the intracellular calcium concentration. Although α-methyl-4-carboxyphenylglycine, a metabotropic glutamate receptor antagonist, blocked the action of HCSA in intracellular calcium response and AMPK phosphorylation, 6-cyano-7-nitroquinoxaline-2,3-dione, an AMPA antagonist, did not exhibit such effects. Knockdown of mGluR5 with siRNA blocked HCSA-induced AMPK phosphorylation. Pretreatment of cells with STO-609, a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, blocked HCSA-induced AMPK phosphorylation, and knockdown of CaMKK blocked HCSA-induced AMPK phosphorylation. In addition, HCSA activated p38 mitogen-activated protein kinase (MAPK). Expression of dominant-negative AMPK suppressed HCSA-mediated phosphorylation of p38 MAPK, and inhibition of AMPK and p38 MAPK blocked HCSA-induced glucose uptake. Phosphorylation of protein kinase C ζ (PKCζ) was also increased by HCSA. Pharmacologic inhibition or knockdown of p38 MAPK blocked HCSA-induced PKCζ phosphorylation, and knockdown of PKCζ suppressed the HCSA-induced increase of cell surface GLUT4. The stimulatory effect of HCSA on cell surface GLUT4 was impaired in FITC-conjugated PKCζ siRNA-transfected cells. Together, the above results suggest that HCSA may have a beneficial role in glucose metabolism in skeletal muscle cells via stimulation of AMPK.  相似文献   

12.
EGF is a regulator of a wide variety of processes in various cell systems. Hepatocytes are important sites in the body's metabolism and function. Glucose transporter 2 (GLUT2) is a major transporter that is expressed strongly in hepatocytes. Therefore, this study examined the effect of EGF on GLUT2 and its related signal cascades in primary cultured chicken hepatocytes. EGF decreased [(3)H]deoxyglucose uptake in a dose- and time-dependent manner (>10 ng/ml, 2 h). AG-1478 (an EGF receptor antagonist) and genistein and herbimycin A (tyrosine kinase inhibitors) blocked the EGF-induced decrease in [(3)H]deoxyglucose uptake, which correlated with the GLUT2 expression level. In addition, the EGF-induced decrease in GLUT2 protein expression was inhibited by staurosporine, H-7, or bisindolylmaleimide I (PKC inhibitors), PD-98059 (a MEK inhibitor), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor), suggesting a role of both PKC and MAPKs (p44/42 MAPK, p38 MAPK, and JNK). In particular, EGF increased the translocation of PKC isoforms (PKC-alpha, -beta(1), -gamma, -delta, and -zeta) from the cytosol to the membrane fraction and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, PKC inhibitors blocked the EGF-induced phosphorylation of three MAPKs. In conclusion, EGF decreases the GLUT2 expression level via the PKC-MAPK signal cascade in chicken hepatocytes.  相似文献   

13.
Abnormal glucose handling in the proximal tubule may play an important role in the development of diabetic nephropathy. Thus, the present study was designed to examine the effect of high glucose on alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its signaling pathways in the primary cultured rabbit renal proximal tubule cells (PTCs). When PTCs were preincubated with 25 or 50 mM glucose for 4 h, 25 or 50 mM glucose significantly inhibited alpha-MG uptake, while 25 or 50 mM mannitol and L-glucose did not affect. Actinomycin D and cycloheximide did not block the effect of high glucose on alpha-MG uptake. Twenty-five millimoles glucose-induced inhibition of alpha-MG uptake was blocked by mepacrine and AACOCF(3), phospholipase A(2) (PLA(2)) inhibitors. Twenty-five millimoles of glucose, not mannitol or L-glucose, significantly increased the [(3)H]-arachidonic acid (AA) release compared to control. In addition, the 25 mM glucose-induced [(3)H]-AA release was completely blocked by mepacrine or AACOCF(3). Indomethacin, a cyclooxygenase inhibitor, blocked the high glucose-induced inhibition of alpha-MG uptake, although econazole, cytochrome P-450 a epoxygenase inhibitor, and nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, did not. On the other hand, staurosporine and bisindolylmaleimide I, protein kinase C (PKC) inhibitors, blocked 25 mM glucose-induced increase of [(3)H]-AA release and inhibition of alpha-MG uptake. However, neomycin, U 73122, and phospholipase c(PLC) inhibitors did not block the effect of 25 mM glucose on [(3)H]-AA release and alpha-MG uptake. Pretreatment of methoxyverapamil, an L-type Ca(2+) channel blocker, abolished 25 mM glucose-induced increase of [(3)H]-AA release. Indeed, 25 mM glucose increased translocation of cPLA(2) from cytosolic fraction to membrane fraction. In conclusion, the present results demonstrate that high glucose inhibits alpha-MG uptake by the increase of AA release via the activation of PKC.  相似文献   

14.
Extracellular ATP, an autocrine or paracrine intercellular transmitter, is known to induce apoptosis in macrophages. However, the precise signaling mechanisms of ATP-induced apoptosis remain to be elucidated. Here we showed that activation of p38 mitogen-activated protein kinase (MAPK) plays a critical role in ATP-induced apoptosis. p38 activation and apoptosis in macrophages were induced by ATP. ATP-induced apoptosis was mediated in part by production of reactive oxygen species (ROS) derived from NOX2/gp91(phox), a component of the NADPH oxidase complex expressed in macrophages and neutrophils. Furthermore, ATP-induced ROS generation, p38 activation, and apoptosis were almost completely inhibited by selective P2X(7) receptor antagonists. We also found that ATP-induced apoptosis were diminished in ASK1-deficient macrophages accompanied by the lack of p38 activation. These results demonstrate that ROS-mediated activation of the ASK1-p38 MAPK pathway downstream of P2X(7) receptor is required for ATP-induced apoptosis in macrophages.  相似文献   

15.
16.
There is evidence that extracellular nucleotides, acting through multiple P2 receptors, may play an important role in the regulation of bone metabolism by activating intracellular signaling cascades. We have studied the modulation of mitogen-activated protein kinase (MAPK) signaling pathways and its relationship to changes in intracellular calcium concentration ([Ca2+]i) induced by ATP in ROS-A 17/2.8 osteoblastic cells. ATP and UTP (10 μM) increased [Ca2+]i by cation release from intracellular stores. We have found that when the cells are subsequently subjected to mechanical stress (medium perturbation), a transient calcium influx occurs. This mechanical stress-activated calcium influx (MSACI) was not observed after ADP stimulation, indicating that P2Y2 receptor activation is required for MSACI. In addition, ERK 1/2 and p38 MAPK were activated by ATP in a dose- and time-dependent manner. This activation was almost completely blocked using neomycin (2.5 mM), an inhibitor of phosphoinositide-phospholipase C (PI-PLC), Ro 318220 (1 μM), a protein kinase C (PKC) inhibitor, and PP1 (50 μM), a potent and selective inhibitor of the Src-family tyrosine kinases. Ca2+-free extracellular medium (containing 0.5 mM EGTA) and the use of gadolinium (5 μM), which suppressed MSACI, prevented ERK 1/2 and p38 phosphorylation by ATP. Altogether, these results represent the first evidence to date suggesting that P2Y2 receptor stimulation by ATP in osteoblasts sensitizes mechanical stress activated calcium channels leading to calcium influx and a fast activation of the ERK 1/2 and p38 MAPK pathways. This effect also involves upstream mediators such as PI-PLC, PKC and Src family kinases.  相似文献   

17.
Effect of angiotensin II (ANG II) on mouse embryonic stem (ES) cell proliferation was examined. ANG II increased [(3)H] thymidine incorporation in a time- (>4 h) and dose- (>10(-9) M) dependent manner. The ANG II-induced increase in [(3)H] thymidine incorporation was blocked by inhibition of ANG II type 1 (AT(1)) receptor but not by ANG II type 2 (AT(2)) receptor, and AT(1) receptor was expressed. ANG II increased inositol phosphates formation and [Ca(2+)](i), and translocated PKC alpha, delta, and zeta to the membrane fraction. Consequently, the inhibition of PLC/PKC suppressed ANG II-induced increase in [(3)H] thymidine incorporation. The inhibition of EGF receptor kinase or tyrosine kinase prevented ANG II-induced increase in [(3)H] thymidine incorporation. ANG II phosphorylated EGF receptor and increased Akt, mTOR, and p70S6K1 phosphorylation blocked by AG 1478 (EGF receptor kinase blocker). ANG II-induced increase in [(3)H] thymidine incorporation was blocked by the inhibition of p44/42 MAPKs but not by p38 MAPK inhibition. Indeed, ANG II phosphorylated p44/42 MAPKs, which was prevented by the inhibition of the PKC and AT(1) receptor. ANG II increased c-fos, c-jun, and c-myc levels. ANG II also increased the protein levels of cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 but decreased the p21(cip1/waf1) and p27(kip1), CDK inhibitory proteins. These proteins were blocked by the inhibition of AT(1) receptor, PLC/PKC, p44/42 MAPKs, EGF receptor, or tyrosine kinase. In conclusion, ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC and EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse ES cells.  相似文献   

18.
Studies from our laboratory have demonstrated that leptin inhibits galactose absorption in vitro by acting on the Na(+)/glucose cotransporter SGLT1. Since PKC and PKA are involved in the regulation of SGLT1 and leptin is able to activate these kinases, we have investigated the possible implication of PKC and PKA in the inhibition of sugar absorption by leptin in rat small intestinal rings. Inhibition of 1 mM galactose uptake by 0.2 nM leptin is blocked by 2 microM chelerythrine, a PKC inhibitor, which by itself does not affect galactose uptake. However, 1 microM H-89, a PKA inhibitor, inhibits galactose uptake and does not block leptin inhibition. Biochemical assays show that the inhibitory effect of leptin is accompanied by a approximately 2-fold increase in PKA and PKC activity. These findings indicate that the activation of PKC is more relevant than PKA activation in the inhibition of galactose absorption by leptin.  相似文献   

19.
This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.  相似文献   

20.
Villus enterocyte nutrient absorption occurs via precisely orchestrated interactions among multiple transporters. For example, transport by the apical Na(+)-glucose cotransporter, SGLT1, triggers translocation of NHE3, Na(+)-H(+) antiporter isoform 3, to the plasma membrane. This translocation requires activation of p38 mitogen-activated protein kinase (MAPK), Akt2, and ezrin. Akt2 directly phosphorylates ezrin, but the precise role of p38 MAPK in this process remains to be defined. Sequence analysis suggested that p38 MAPK could not directly phosphorylate Akt2. We hypothesized that MAPKAPK-2 might link p38 MAPK and Akt2 activation. MAPKAPK-2 was phosphorylated after initiation of Na(+)-glucose cotransport with kinetics that paralleled activation of p38 MAPK, Akt2, and ezrin. MAPKAPK-2, Akt2, and ezrin phosphorylation were all attenuated by p38 MAPK inhibition but were unaffected by dominant negative ezrin expression. Akt2 inhibition blocked ezrin but not p38 MAPK or MAPKAPK-2 phosphorylation, suggesting that MAPKAPK-2 could be an intermediate in p38 MAPK-dependent Akt2 activation. Consistent with this, MAP-KAPK-2 could phosphorylate an Akt2-derived peptide in vitro. siRNA-mediated MAPKAPK-2 knockdown inhibited phosphorylation of Akt2 and ezrin but not p38 MAPK. MAPKAPK-2 knockdown also blocked NHE3 translocation. Thus, MAP-KAPK-2 controls Akt2 phosphorylation. In so doing, MAP-KAPK-2 links p38 MAPK to Akt2, ezrin, and NHE3 activation after SGLT1-mediated transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号