首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In previous papers we showed that Ang II increases the proximal tubule Na+-ATPase activity through AT1/PKC pathway [L.B. Rangel, C. Caruso-Neves, L.S. Lara, A.G. Lopes, Angiotensin II stimulates renal proximal tubule Na+-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316, L.B.A. Rangel, A.G. Lopes, L.S. Lara, C. Caruso-Neves, Angiotensin II stimulates renal proximal tubule Na+)-ATPase activity through the activation of protein kinase C. Biochim. Biophys. Acta 1564 (2002) 310-316]. In the present paper, we study the involvement of PI-PLCbeta on the stimulatory effect of angiotensin II (Ang II) on the proximal tubule Na+-ATPase activity. Western blotting assays, using a polyclonal antibody for PI-PLCbeta, show a single band of about 150 KDa, which correspond to PI-PLCbeta isoforms. Ang II induces a rapid decrease in PIP2 levels, a PI-PLCbeta substrate, being the maximal effect observed after 30 s incubation. This effect of Ang II is completely abolished by 5 x 10(-8) M U73122, a specific inhibitor of PI-PLCbeta. In this way, the effect of 10(-8) M Ang II on the proximal tubule basolateral membrane (BLM) Na+-ATPase activity is completely abolished by 5 x 10(-8) M U73122. The increase in diacylglycerol (DAG) concentration, an product of PI-PLCbeta, from 0.1 to 10 nM raises the Na+-ATPase activity from 6.1+/-0.2 to 13.1+/-1.8 nmol Pi mg(-1) min(-1). This effect is similar and non-additive to that observed with Ang II. Furthermore, the stimulatory effect of 10 nM DAG is completely reversed by 10(-8) M calphostin C (Calph C), an inhibitor of PKC. Taken together these data indicate that Ang II stimulates the Na+-ATPase activity of proximal tubule BLM through a PI-PLCbeta/PKC pathway.  相似文献   

2.
Recently, our group described an AT(1)-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na(+)-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na(+)-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na(+)-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na(+)-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

3.
Recently, our group described a B1-mediated stimulatory effect of des-Arg(9)-bradykinin (DABK) on the Na(+)-ATPase activity of proximal tubule basolateral membranes (BLM) [Biochim. Biophys. Acta 1431 (1999) 483.]. Data in the present report suggest the participation of a phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway as the molecular mechanism of DABK-mediated stimulation of the Na(+)-ATPase activity since (i) 10(-8) M DABK activates PI-PLC activity; (ii) 10(-9) M U73122, a PI-PLC inhibitor, abolishes the effect of 10(-8) M DABK on the Na(+)-ATPase activity; (iii) 10(-8) M DABK increases phosphoprotein formation by 34%. This effect is completely reversed by 10(-7) M calphostin C, an inhibitor of PKC; (iv) 20 ng/ml TPA, an activator of PKC, and 10(-8) M DABK stimulate the Na(+)-ATPase activity in a similar and nonadditive manner. Furthermore, the effect of 10(-8) M DABK is completely reversed by calphostin C; (v) 10(-8) M DABK increases phosphoserine residue levels by 54%. This effect is completely reversed by 10(-7) M calphostin C.  相似文献   

4.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from proximal tubule basolateral membranes by cAMP. An increase in dibutyryl-cAMP (d-cAMP) concentration from 10(-8) to 5x10(-5) M stimulates the ouabain-insensitive Na(+)-ATPase activity. The ATPase activity increases from 6.0+/-0.4 to 10.1+/-0.7 nmol Pi mg(-1) min(-1), in the absence and presence of 5x10(-6) M d-cAMP, respectively. Similarly, the addition of cholera toxin (CTX), forskolin (FSK) or guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) also increases the Na(+)-ATPase activity in a dose-dependent manner, with maximal effect at 10(-8) M, 10(-6) M and 10(-7) M, respectively. The effect of 10(-8) M CTX is not additive to the effect of GTPgammaS, and is completely abolished by 200 microM guanosine 5'-O-(2-thiodiphosphate). The stimulatory effects of CTX and FSK on the Na(+)-ATPase activity are accompanied by an increase in cAMP formation by the basolateral membranes of the proximal tubule cells. Furthermore, 10(-8) M protein kinase A peptide inhibitor (PKAi) completely abolishes the stimulatory effect of 5x10(-6) M d-cAMP or 10(-4) M FSK on the Na(+)-ATPase activity. Incubation of the basolateral membranes with [gamma-(32)P]ATP in the presence of d-cAMP or FSK increases the global hydroxylamine-resistant phosphorylation and especially promotes an increase in phosphorylation of protein bands of approximately 100 and 200 kDa. This stimulation is not seen when 10(-8) M PKAi is added simultaneously. Taken together these data suggest that activation of a cAMP/PKA pathway modulates the Na(+)-ATPase activity in isolated basolateral membranes of the proximal tubule.  相似文献   

5.
This study examined the effects of chronic blockade of the renal formation of epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid with 1-aminobenzotriazole (ABT; 50 mg.kg(-1). day(-1) ip for 5 days) on pressure natriuresis and the inhibitory effects of elevations in renal perfusion pressure (RPP) on Na(+)-K(+)-ATPase activity and the distribution of the sodium/hydrogen exchanger (NHE)-3 in the proximal tubule of rats. In control rats (n = 15), sodium excretion rose from 2.3 +/- 0.4 to 19.4 +/- 1.8 microeq.min(-1).g kidney weight(-1) when RPP was increased from 114 +/- 1 to 156 +/- 2 mmHg. Fractional excretion of lithium rose from 28 +/- 3 to 43 +/- 3% of the filtered load. Chronic treatment of the rats with ABT for 5 days (n = 8) blunted the natriuretic response to elevations in RPP by 75% and attenuated the increase in fractional excretion of lithium by 45%. In vehicle-treated rats, renal Na(+)-K(+)-ATPase activity fell from 31 +/- 5 to 19 +/- 2 micromol P(i).mg protein(-1).h(-1) and NHE-3 protein was internalized from the brush border of the proximal tubule after an elevation in RPP. In contrast, Na(+)-K(+)-ATPase activity and the distribution of NHE-3 protein remained unaltered in rats treated with ABT. These results suggest that cytochrome P-450 metabolites of arachidonic acid contribute to pressure natriuresis by inhibiting Na(+)-K(+)-ATPase activity and promoting internalization of NHE-3 protein from the brush border of the proximal tubule.  相似文献   

6.
We show that MDCK I cells express, besides the classical (Na(+)+K(+))ATPase, a Na(+)-stimulated ATPase activity with the following characteristics: (1) K(0.5) for Na(+) 7.5+/-1.5 mM and V(max) 23.12+/-1.1 nmol Pi/mg per min; (2) insensitive to 1 mM ouabain and 30 mM KCl; and (3) inhibited by furosemide and vanadate (IC(50) 42.1+/-8.0 and 4.3+/-0.3 microM, respectively). This enzyme forms a Na(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate with molecular weight of 100 kDa. Immunoprecipitation of the (Na(+)+K(+))ATPase with monoclonal anti-alpha(1) antibody reduced its activity in the supernatant by 90%; the Na(+)-ATPase activity was completely maintained. In addition, the formation of the Na(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate intermediate occurred at the same magnitude as that observed before immunoprecipitation. These data suggest that Na(+)-ATPase and (Na(+)+K(+))ATPase activities are independent, with Na(+)-ATPase belonging to a different enzyme entity.  相似文献   

7.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

8.
Sodium-hydrogen exchanger regulatory factor isoform-1 (NHERF-1) and NHERF-2 are two structurally related PDZ-domain-containing protein adapters that effectively transduce cyclic AMP (cAMP) signals that inhibit NHE3, the sodium-hydrogen exchanger isoform present at the apical surface of kidney and gut epithelia. The mouse renal proximal tubule expresses both NHERF isoforms, suggesting their redundant functions as regulators of renal electrolyte metabolism. To define the role of NHERF-1 in the physiological control of NHE3, we analyzed NHE3 activity in isolated brush border membrane (BBM) preparations from renal proximal tubules of wild-type (WT) and NHERF-1 (-/-) mice. Basal Na(+)-H(+) exchange was indistinguishable in BBMs from WT and NHERF-1 (-/-) mice (0.96+/-0.08 and 0.95+/-0.10 nmol/mg protein/10 s, respectively). Activation of membrane bound cAMP-dependent protein kinase (PKA) by cAMP inhibited NHE3 activity in WT BBMs (0.55+/-0.07 nmol/mg protein/10 s or 40+/-9%, P<0.01) but had no discernible effect on Na(+)-H(+) exchange in the NHERF-1 (-/-) BBM (0.97+/-0.07 nmol/mg protein/10 s; P=not significant). This was associated with a significant decrease in cAMP-stimulated phosphorylation of NHE3 immunoprecipitated from solubilized NHERF-1 (-/-) BBMs. As the protein levels for NHE3, NHERF-2, PKA and ezrin were not changed in the NHERF-1 (-/-) BBMs, the data suggest a unique role for NHERF-1 in cAMP-mediated inhibition of NHE3 activity in the renal proximal tubule of the mouse.  相似文献   

9.
Low birth weight humans and rats exposed to a low-protein diet in utero have reduced bone mineral content. Renal calcium loss during the period of rapid skeletal growth is associated with bone loss. Because young rats exposed to low protein display altered renal function, we tested the hypothesis that renal calcium excretion is perturbed in this model. Pregnant Wistar rats were fed isocalorific diets containing either 18% (control) or 9% (low) protein throughout gestation. Using standard renal clearance techniques, Western blotting for renal calcium transport proteins, and assays for Na(+)-K(+)-ATPase activity and serum calcitropic hormones, we characterized calcium handling in 4-wk-old male offspring. Histomorphometric analyses of femurs revealed a reduction in trabecular bone mass in low-protein rats. Renal calcium (control vs. low protein: 10.4 +/- 2.1 vs. 27.6 +/- 4.5 nmol x min(-1) x 100 g body wt(-1); P < 0.01) and sodium excretion were increased, but glomerular filtration rate was reduced in low-protein animals. Total plasma calcium was reduced in low-protein rats (P < 0.01), but ionized calcium, serum calcitropic hormone concentrations, and total body calcium did not differ. There was no significant change in plasma membrane Ca(2+)-ATPase pump, epithelial calcium channel, or calbindin-D(28K) expression in low-protein rat kidneys. However, Na(+)-K(+)-ATPase activity was 36% lower (P < 0.05) in low-protein rats. These data suggest that the hypercalciuria of low-protein rats arises through a reduction in passive calcium reabsorption in the proximal tubule rather than active distal tubule uptake. This may contribute to the reduction in bone mass observed in this model.  相似文献   

10.
Recently, we demonstrated that the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubules is reversed, in a dose-dependent manner, by Ang-(1-7) [Biochim. Biophys. Acta 1467 (2000) 189]. In the present paper, we characterized the receptor involved in this phenomenon. The preincubation of the Na(+)-ATPase with 10(-8) M Ang II increases the enzyme activity from 7.50+/-0.02 (control) to 12.40+/-1.50 nmol Pi mg(-1) min(-1) (p<0.05). Addition of 10(-9) M Ang-(1-7) completely reverts this effect returning the ATPase activity to the control level. This effect seems to be specific to Ang-(1-7) since Ang III (10(-12)-10(-8) M) does not modify the stimulation of the renal proximal tubule Na(+)-ATPase activity by Ang II. Saralasin abolishes the Ang-(1-7) effect in a dose-dependent manner being the maximal effect obtained at 10(-11) M. The increase in A779 concentration (from 10(-12) to 10(-7) M), a specific Ang-(1-7) antagonist, also abolishes the Ang-(1-7) effect. On the other hand, PD123319 (10(-8)-10(-6) M), an AT(2) antagonist receptor, and losartan (10(-12)-10(-7) M), an AT(1) antagonist receptor, does not modify the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) reverts the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubule through a A779-sensitive receptor.  相似文献   

11.
Apart from Na(+),K(+)-ATPase, a second sodium pump, Na(+)-stimulated, K(+)-independent ATPase (Na(+)-ATPase) is expressed in proximal convoluted tubule of the mammalian kidney. The aim of this study was to develop a method of Na(+)-ATPase assay based on the method previously used by us to measure Na(+),K(+)-ATPase activity. The ATPase activity was assayed as the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Na(+)-ATPase activity was calculated as the difference between the activities measured in the presence and in the absence of 50 mM NaCl. Na(+)-ATPase activity was detected in the renal cortex (3.5 +/- 0.2 mumol phosphate/h per mg protein), but not in the renal medulla. Na(+)-ATPase was not inhibited by ouabain or an H(+),K(+)-ATPase inhibitor, Sch 28080, but was almost completely blocked by 2 mM furosemide. Leptin administered intraperitoneally (1 mg/kg) decreased the Na(+),K(+)-ATPase activity in the renal medulla at 0.5 and 1 h by 22.1% and 27.1%, respectively, but had no effect on Na(+)-ATPase in the renal cortex. Chronic hyperleptinemia induced by repeated subcutaneous leptin injections (0.25 mg/kg twice daily for 7 days) increased cortical Na(+),K(+)-ATPase, medullary Na(+),K(+)-ATPase and cortical Na(+)-ATPase by 32.4%, 84.2% and 62.9%, respectively. In rats with dietary-induced obesity, the Na(+),K(+)- ATPase activity was higher in the renal cortex and medulla by 19.7% and 34.3%, respectively, but Na(+)-ATPase was not different from control. These data indicate that both renal Na(+)-dependent ATPases are separately regulated and that up-regulation of Na(+)-ATPase may contribute to Na(+) retention and arterial hypertension induced by chronic hyperleptinemia.  相似文献   

12.
The mechanisms of cadmium (Cd)-dependent nephrotoxicity were studied in a rat proximal tubule (PT) cell line. CdCl(2) (5 microM) increased the production of reactive oxygen species (ROS), as determined by oxidation of dihydrorhodamine 123 to fluorescent rhodamine 123. The levels of ubiquitin-conjugated cellular proteins were increased by Cd in a time-dependent fashion (maximum at 24-48 h). This was prevented by coincubation with the thiol antioxidant N-acetylcysteine (NAC, 15 mM). Cd also increased apoptosis (controls: 2.4+/-1.6%; Cd: 8.1+/-1.9%), but not necrosis (controls: 0.5 +/- 0.3%; Cd: 1.4+/- 2.5%). Exposure of PT cells with Cd decreased protein levels of the catalytic subunit (alpha1) of Na+/K(+)-ATPase, a long-lived membrane protein (t(1/2)>48 h) that drives reabsorption of ions and nutrients through Na(+)-dependent transporters in PT. Incubation of PT cells for 48 h with Cd decreased Na+/K(+)-ATPase alpha1-subunit, as determined by immunoblotting, by approximately 50%, and NAC largely prevented this effect. Inhibitors of the proteasome such as MG-132 (20 microM) or lactacystin (10 microM), as well as lysosomotropic weak bases such as chloroquine (0.2 mM) or NH(4)Cl (30 mM), significantly reduced the decrease of Na(+)/K(+)-ATPase alpha1-subunit induced by Cd, and in combination abolished the effect of Cd on Na+/K(+)-ATPase. Immunofluorescence labeling of Na+/K(+)-ATPase showed a reduced expression of the protein in the plasma membrane of Cd-exposed cells. After addition of lactacystin and chloroquine to Cd-exposed PT cells, immunoreactive material accumulated into intracellular vesicles. The data indicate that micromolar concentrations of Cd can increase ROS production and exert a toxic effect on PT cells. Oxidative damage increases the degradation of Na+/K(+)-ATPase through both the proteasomal and endo-/lysosomal proteolytic pathways. Degradation of oxidatively damaged Na+/K(+)-ATPase may contribute to the 'Fanconi syndrome'-like Na(+)-dependent transport defects associated with Cd-nephrotoxicity.  相似文献   

13.
We investigated the role of protein kinase C (PKC) in alpha(1)-adrenergic regulation of intracellular Na(+) activity (a(Na)(i)) in single guinea pig ventricular myocytes. a(Na)(i) and membrane potentials were measured with the Na(+)-sensitive indicator sodium-binding benzofuran isophthalate and conventional microelectrodes, respectively, at room temperature (24-26 degrees C) while myocytes were stimulated at a rate of 0.25-0.3 Hz. The PKC activator 4beta-phorbol 12-myristate 13-acetate (PMA) decreased a(Na)(i) in a concentration-dependent manner. PMA (100 nM) produced a maximal decrease in a(Na)(i) of 1.5 mM from 6.5 +/- 0.4 to 5.0 +/- 0.4 mM (means +/- SE, n = 12, P < 0.01). The PMA concentration required for a half-maximal decrease in a(Na)(i) was 0.46 +/- 0.13 nM (n = 3, P < 0.01). An inactive phorbol, 4alpha-phorbol 12-myristate 13-acetate, did not decrease a(Na)(i). The decrease caused by PMA could be blocked by the PKC inhibitors staurosporine and bisindolylmaleimide I (GF-109203X). Stimulation of the alpha(1)-adrenoceptor with 50 microM phenylephrine decreased a(Na)(i) from 6.1 +/- 0.3 to 4.6 +/- 0.3 mM (n = 11, P < 0.01). The decrease in a(Na)(i) produced by phenylephrine was blocked by pretreatment with staurosporine, GF-109203X, or PMA. The decrease in a(Na)(i) produced by PMA was not prevented by pretreatment with tetrodotoxin but was blocked by pretreatment with strophanthidin or high extracellular K(+) concentration. The results suggest that alpha(1)-adrenergic receptor activation results in a decrease in a(Na)(i) via PKC-induced stimulation of the Na(+)-K(+) pump in cardiac myocytes.  相似文献   

14.
Gao Y  Luo L  Liu H 《生理学报》2007,59(3):382-386
本研究旨在对Doucet等报道的定量检测大鼠单根近端肾小管Na^+-K^+-ATPase活性方法进行改进。取经过Ⅱ型胶原酶消化的大鼠肾脏皮质组织,在体视显微镜下手工分离单根近端肾小管,并测量其长度,经低渗和冻融处理后与[γ-^32P]ATP共同孵育,液闪法检测从[γ-^32P]ATP解离出的^32Pi,采用修正后的公式计算Na^+-K^+-ATPase活性。改良法与Doucet等的方法比较,测定单根近端肾小管Na^+-K^+-ATPase活性无显著性差异(P〉0.05)。改进后的方法节省试剂,操作简便、省时。  相似文献   

15.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

16.
In the present paper we studied the effect of urodilatin and atrial natriuretic peptide (ANP) on the proximal tubule Na+-ATPase and (Na+K+)ATPase activities. Urodilatin and ANP inhibit the Na+-ATPase activity but not the (Na+K+)ATPase activity. Maximal effect was observed at a concentration of 10(-11) M for both peptides. In this condition, the enzyme activity decreases from 10.8 +/- 1.6 (control) to 5.7 +/- 0.9 or 6.1 +/- 0.7 nmol Pi mg(-1) min(-1) in the presence of urodilatin or ANP, respectively. This effect was completely reversed by 10(-6) M LY83583, a guanylyl cyclase inhibitor, and mimicked by 10 nM cGMP. Furthermore, both ANP and urodilatin increase cGMP production by 33% and 49%, respectively. This is the first demonstration that it was shown that urodilatin and ANP directly modulate primary active sodium transport in the proximal tubule. The data obtained indicate that this effect is mediated by the activation of the NPR-A/guanylate cyclase/cGMP pathway.  相似文献   

17.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

18.
Our aim was to determine the presence of sodium pumps in Entamoeba histolytica. It is shown through the measurement of ouabain-sensitive ATPase activity and immunoblotting that E. histolytica does not express (Na(+)+K(+))ATPase. On the other hand, we observed a Na(+)-ATPase with the following characteristics: (1) stimulated by Na(+) or K(+), but these effects are not addictive; (2) the apparent affinity is similar for Na(+) and K(+) (K(0.5) = 13.3 +/- 3.7 and 15.4 +/- 3.1mM, respectively), as well as the V(max) (24.9 +/- 1.5 or 27.5 +/- 1.6 nmol Pi mg(-1)min(-1), respectively); (3) insensitive up to 2mM ouabain; and (4) inhibited by furosemide with an IC(50) of 0.12 +/- 0.004 mM. Furthermore, this enzyme forms a Na(+)- or K(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate.  相似文献   

19.
Influence of aliphatic polyamines of spermine and spermidine on the enzymatic activity of the ouabain-sensitive Na+,K(+)-ATPase and the ouabain-resistant basal Mg(2+)-ATPase (specific activity--10.6 +/- 0.9 and 18.1 +/- 1.2 microM P(i)/hour on 1 mg of protein accordingly, n = 7) has been studied in the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution. It was found, that the polyamine spermine in concentration of 1 and 10 mM activated the Na+,K(+)-ATPase by 54 and 64% on the average relative to control value. Spermidine also stimulated the Na+,K(+)-ATPase activity, however it did it less efficiently than spermine: by 8 and 20% on the average at concentration of 1 and 10 mM, accordingly. Similarly, polyamines had affect on the basal Mg(2+)-ATPase: spermine in concentration of 1 and 10 mM activated it by 26 and 39% relative to control value; spermidine in concentration of 1 and 10 mM activated it by 10 and 32% relative to control. The magnitudes of the apparent activation constant K(a) of spermine were 0.35 +/- 0.07 and 0.10 +/- 0.02 mM for Na+,K(+)-ATPase and basal Mg(2+)-ATPase, accordingly (M +/- m, n = 5). It is supposed, that the obtained experimental data can be useful in the further research of the membrane mechanisms underlying of the cationic exchange in the smooth muscles, in particular, when investigating the role of the plasmatic membrane in providing electromechanical coupling in them, and also in regulation of ionic homeostasis in the smooth muscle cells.  相似文献   

20.
In astrocytes the activity of the Na+,K(+)-ATPase pump maintains an inwardly directed electrochemical sodium gradient used by the Na+-dependent transporters and regulates the extracellular K+ concentration essential for neuronal excitability. We show here that incubation of cultured rat astrocytes with angiotensin II (Ang II) modulates Na+,K(+)-ATPase activity, in a dose- and time-dependent manner. Na+,K(+)-ATPase activation was mediated by binding of Ang II to AT1 receptors as it was completely blocked by DuP 753, a specific AT1 receptor subtype antagonist. Stimulation of Na+,K(+)-ATPase activity by Ang II was dependent on protein kinase C (PKC) activation because PKC antagonists abolished the inducing effect of Ang II and the PKC activator phorbol 12-myristate 13-acetate enhanced transporter activity. Ang II stimulated translocation of PKC-delta but not that of other PKC isoforms from the cytosol to the plasma membrane. These results indicate that the activity of Na+,K(+)-ATPase in astrocytes is increased by physiological concentrations of Ang II and that the AT1 receptor subtype mediates the Na+,K(+)-ATPase response to Ang II via PKC-delta activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号