首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus sphaericus 2362 produces a parasporal crystal containing 42 and 51 kilodalton (kDa) proteins. Both of these proteins are required for toxicity to mosquito larvae; neither is toxic alone. When overexpressed inB. subtilis, these two proteins accumulate as amorphous inclusions (AIs). Bioassays involving larvae ofCulex pipiens and different ratios of these AIs indicated that maximal toxicity was observed at a ratio of approximately one 42-kDa protein to one 51-kDa protein. Purified preparations of these proteins, as well as derivatives similar to those which accumulate in the gut of mosquito larvae, were also toxic when combined, but not toxic singly. Different results were obtained when the toxicity of these preparations was tested for tissue culture-grown cells ofC. quinquefasciatus. Under these conditions, the 39-kDa derivative of the 42-kDa protein was alone sufficient for toxicity, which was not increased by the addition of the 51-kDa protein or its derivatives. These results indicate that theB. sphaericus larvicide acts as a binary toxin in mosquitos, whereas only the 39-kDa protein is required for full toxicity to tissue culture-grown cells.  相似文献   

2.
Bacillus sphaericus 2362 produces a binary toxin consisting of 51- and 42-kDa proteins, both of which are required for toxicity to mosquito larvae. Upon ingestion by larvae, these proteins are processed to 43 and 39 kDa, respectively. Using site-directed mutagenesis, we have obtained N- and C-terminal deletions of the 51-kDa protein and expressed them in B. subtilis by using the subtilisin promoter. Removal of 21 amino acids from the N terminus and 53 amino acids from the C terminus resulted in a protein with the same electrophoretic properties as the 43-kDa degradation product which accumulates in the guts of mosquito larvae. This protein was toxic only in the presence of the 42-kDa protein. A deletion of 32 amino acids at the N terminus combined with a 53-amino-acid deletion at the C terminus resulted in a protein which retained toxicity. Toxicity was lost upon a further deletion of amino acids at potential chymotrypsin sites (41 at the N terminus, 61 at the C terminus). Comparison of the processing of the 51- and the 42-kDa proteins indicated that in spite of their sequence similarity proteolysis occurred at different sites.  相似文献   

3.
The presence of specific receptors for Bacillus sphaericus binary toxin on brush-border membrane fractions (BBMF) from Culex pipiens larvae midgut cells was demonstrated by an in vitro binding assay. Both activated and radiolabelled polypeptides from the 51-kDa and 42-kDa binary toxin of B. sphaericus 1593 specifically bound to BBMF. Direct binding and homologous competition experiments indicated a single class of B. sphaericus toxin receptors, with a dissociation constant (Kd) of approximately 20 nM and a maximum binding capacity (Bmax) of approximately 7 pmol/mg BBMF protein. The sugars GalNAc, GlcNAc and N-acetyl neuraminic acid had no detectable inhibitory effect on toxin binding to C. pipiens BBMF. Binding experiments with the non-susceptible mosquito species Aedes aegypti failed to detect significant binding of B. sphaericus binary toxin to A. aegypti BBMF.  相似文献   

4.
After site-directed mutagenesis, the genes coding for the 42- and 51-kilodalton (kDa) mosquitocidal proteins of Bacillus sphaericus 2362 were placed under the regulation of the aprE (subtilisin) promoter of the Bacillus subtilis vector pUE (a derivative of pUB18). The levels of expression of the gene products in B. subtilis DB104 and B. sphaericus 718 were assessed by bioassays with larvae of Culex pipiens and by Western immunoblots. The results indicated that a higher amount of protein was produced in B. subtilis DB104. Electron microscopic examination of B. subtilis DB104 and B. sphaericus 718 containing the 42- and 51-kDa proteins indicated that amorphous inclusions accumulated in the former species and that crystals identical in appearance to that found in B. sphaericus 2362 were produced in the latter. Strains producing only the 42- or the 51-kDa protein were not toxic to larvae of C. pipiens. A mixture of both strains, a single strain producing both proteins, or a fusion of the 51- and the 42-kDa proteins was toxic. The amount of B. subtilis DB104 containing the 42- and the 51-kDa proteins necessary to kill 50% of the larvae of C. pipiens was 5.6 ng (dry weight) of cells per ml. This value was significantly lower than that for B. sphaericus 2362 (14 ng [dry weight] per ml). Larvae consuming purified amorphous inclusions containing the 42-kDa protein degraded this protein this protein to primarily 39- and 24-kDa peptides, whereas inclusions with the 51-kDa protein were primarily degraded to a protein of 44 kDa. Past studies involving purified proteins from B. sphaericus 2362 indicate an associate of toxicity with the 39-kDa peptide. The results presented here suggest that the 44-kDa degradation product of the 51-kDa protein may also be required for toxicity.  相似文献   

5.
After ingestion of the parasporal crystals of Bacillus sphaericus, mosquito larvae process the 42-kilodalton (kDa) toxin to a protein of 39 kDa, which has an increased toxicity (A. H. Broadwell and P. Baumann, Appl. Environ. Microbiol. 53:1333-1337, 1987). A similar activation is performed by trypsin and chymotrypsin. Using site-directed mutagenesis, we have constructed derivatives of the 42-kDa toxin with a deletion of 10 amino acids at the N terminus and deletions of 7, 17, or 20 amino acids at the C terminus. Toxicity for mosquito larvae was retained upon deletion of 7 or 17 amino acids but was lost upon deletion of 20 amino acids. Evidence is presented indicating that the protein containing deletions of 10 amino acids at the N terminus and 17 amino acids at the C terminus (corresponding to potential chymotrypsin cleavage sites) is similar to the 39-kDa protein produced in mosquito larvae or by digestion with chymotrypsin. Digestion with trypsin appears to generate a protein lacking 16 or 19 amino acids from the N terminus and 7 amino acids from the C terminus. As is the case with the recombinant-made 42-kDa protein, toxicity of its derivatives is dependent on the presence of a 51-kDa protein which is a component of the parasporal crystal of B. sphaericus 2362.  相似文献   

6.
The 51- and 42-kDa proteins which constitute the binary mosquitocidal toxin of Bacillus sphaericus 2362 have a low overall sequence similarity but share several regions of near identity (L. Baumann, A. H. Broadwell, and P. Baumann, J. Bacteriol. 170:2045-2050, 1988). By using site-directed mutagenesis, deletions of 6 to 16 amino acids in three of these regions of the 51- and 42-kDa proteins were made, and the modified proteins were expressed in Bacillus subtilis. Deletions in both of these proteins resulted in a loss of toxicity for mosquito larvae. Hybrid proteins containing exchanged fragments of the 51- and 42-kDa proteins were inactive when tested in a variety of combinations, thereby indicating that potentially analogous fragments of these two proteins were not functionally equivalent. An internal duplication of 73 amino acids in the 51-kDa protein and 72 amino acids in the 42-kDa protein resulted in a major reduction in toxicity. These results indicate that the conserved regions of the 51- and 42-kDa proteins are necessary for toxicity to larvae and that the 51- and 42-kDa proteins, despite their sequence similarity, are unique, differing from each other by at least one essential attribute.  相似文献   

7.
The 51- and 42-kDa proteins which constitute the binary mosquitocidal toxin of Bacillus sphaericus 2362 have a low overall sequence similarity but share several regions of near identity (L. Baumann, A. H. Broadwell, and P. Baumann, J. Bacteriol. 170:2045-2050, 1988). By using site-directed mutagenesis, deletions of 6 to 16 amino acids in three of these regions of the 51- and 42-kDa proteins were made, and the modified proteins were expressed in Bacillus subtilis. Deletions in both of these proteins resulted in a loss of toxicity for mosquito larvae. Hybrid proteins containing exchanged fragments of the 51- and 42-kDa proteins were inactive when tested in a variety of combinations, thereby indicating that potentially analogous fragments of these two proteins were not functionally equivalent. An internal duplication of 73 amino acids in the 51-kDa protein and 72 amino acids in the 42-kDa protein resulted in a major reduction in toxicity. These results indicate that the conserved regions of the 51- and 42-kDa proteins are necessary for toxicity to larvae and that the 51- and 42-kDa proteins, despite their sequence similarity, are unique, differing from each other by at least one essential attribute.  相似文献   

8.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

9.
Gut proteases from the larvae of the mosquito Culex pipiens convert the 43-kilodalton (kDa) toxin from Bacillus sphaericus 2362 to a 40-kDa peptide. The 50% lethal concentration of this peptide for tissue culture-grown cells of Culex quinquefasciatus was 1.0 microgram/ml (as determined by the intracellular ATP assay), 54-fold less than that of the 43-kDa peptide. Gut proteases from Anopheles gambiae and Aedes aegypti, as well as bovine pancreatic trypsin, also converted the 43-kDa protein to a 40-kDa peptide which was indistinguishable from the peptide formed by the proteases from C. pipiens with respect to its toxicity to tissue culture-grown cells of C. quinquefasciatus. Evidence for the in vivo conversion of the 43-kDa protein to the 40-kDa peptide was also obtained from experiments in which larvae of C. pipiens, Anopheles gambiae, and Aedes aegypti were fed crystals from B. sphaericus 2362. By using the exclusion of trypan blue as an indication of cell viability, it was shown that chitobiose, chitotriose, N-acetylmuramic acid, and N-acetylneuraminic acid decreased the toxicity of the 40-kDa peptide (from 100 to 50% mortality at about 10 mM concentrations of these sugars). Muramic acid, N-acetylgalactosamine, and N-acetylglucosamine were less effective, while several sugars had no effect, suggesting that the 40-kDa toxin binds to specific receptors on the cell membrane. The 40-kDa protein was less toxic to tissue culture-grown cells of Anopheles gambiae and Aedes dorsalis, and the same sugars which reduced the toxicity for cells of C. quinquefasciatus were also effective in reduction of toxicity for these cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Gut proteases from the larvae of the mosquito Culex pipiens convert the 43-kilodalton (kDa) toxin from Bacillus sphaericus 2362 to a 40-kDa peptide. The 50% lethal concentration of this peptide for tissue culture-grown cells of Culex quinquefasciatus was 1.0 microgram/ml (as determined by the intracellular ATP assay), 54-fold less than that of the 43-kDa peptide. Gut proteases from Anopheles gambiae and Aedes aegypti, as well as bovine pancreatic trypsin, also converted the 43-kDa protein to a 40-kDa peptide which was indistinguishable from the peptide formed by the proteases from C. pipiens with respect to its toxicity to tissue culture-grown cells of C. quinquefasciatus. Evidence for the in vivo conversion of the 43-kDa protein to the 40-kDa peptide was also obtained from experiments in which larvae of C. pipiens, Anopheles gambiae, and Aedes aegypti were fed crystals from B. sphaericus 2362. By using the exclusion of trypan blue as an indication of cell viability, it was shown that chitobiose, chitotriose, N-acetylmuramic acid, and N-acetylneuraminic acid decreased the toxicity of the 40-kDa peptide (from 100 to 50% mortality at about 10 mM concentrations of these sugars). Muramic acid, N-acetylgalactosamine, and N-acetylglucosamine were less effective, while several sugars had no effect, suggesting that the 40-kDa toxin binds to specific receptors on the cell membrane. The 40-kDa protein was less toxic to tissue culture-grown cells of Anopheles gambiae and Aedes dorsalis, and the same sugars which reduced the toxicity for cells of C. quinquefasciatus were also effective in reduction of toxicity for these cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Interaction of the Bacillus sphaericus mosquito larvicidal proteins   总被引:8,自引:0,他引:8  
Genes for 51.4- and 41.9-kDa insecticidal proteins of Bacillus sphaericus were separately cloned and expressed in Escherichia coli. Both proteins were required for toxicity. Approximately equal numbers of cells containing the 51.4- and 41.9-kDa proteins produced the greatest toxicity; excess 41.9-kDa protein did not affect toxicity, whereas excess 51.4-kDa protein reduced activity. Larvae were killed when 41.9-kDa protein was fed up to 24 h after the 51.4-kDa protein, but not when the order of feeding was reversed. Radiolabelled toxins bound in approximately equal amounts to the gastric caecum and posterior midgut of Culex quinquefasciatus larvae. Radiolabelled 51.4-kDa protein was rapidly degraded by ca. 12-13 kDa in the larval gut, while 41.9-kDa protein was degraded by 1-2 kDa. Nonreduced toxin extracted from B. sphaericus produced a band on SDS-PAGE of ca. 68-74 kDa that contained both 51.4- and 41.9-kDa proteins based on sequence analysis, and a band of ca. 51 kDa that contained primarily 41.9-kDa protein. Escherichia coli containing 51.4-kDa protein enhanced toxicity of the latter eluted SDS-PAGE band. These proteins may associate very strongly, and trace amounts of 51.4-kDa protein in preparations of 41.9-kDa protein from B. sphaericus may be responsible for the previously reported toxicity of the latter.  相似文献   

12.
During sporulation, Bacillus sphaericus 2362 produces a parasporal crystalline protein which is toxic for the larvae of a number of mosquito species. Using the Escherichia coli cloning vector lambda gt11, in which gene products of the inserts may be fused to beta-galactosidase, we isolated 29 bacteriophages which produced peptides-reacting with antiserum to crystal protein. On the basis of restriction enzyme analyses of the recombinants and Ouchterlony immunodiffusion experiments with induced lysogens as a source of antigens, the recombinants were assigned to three groups, designated A, B, and C. Group A consisted of three clones which appeared to express all or part of the B. sphaericus toxin gene from their own promoters and one clone producing a beta-galactosidase-toxin fusion protein. The host cells of two induced recombinant lysogens of this group were toxic to larvae of Culex pipiens. A cell suspension containing 174 ng (dry weight) of the more toxic recombinant per ml killed 50% of the larvae. Both recombinants formed peptides with molecular sizes of 27, 43, and 63 kilodaltons (kDa). The antigenically related 27- and 43-kDa peptides were distinct from the 63-kDa peptide, which resembled crystals from sporulating cells of B. sphaericus in which antigenically distinct 43- and 63-kDa proteins are derived from a 125-kDa precursor. A 3.5-kilobase HindIII fragment from recombinants having toxic activity against larvae was subcloned into pGEM-3-blue. E. coli cells harboring this fragment were toxic to mosquito larvae and produced peptides of 27, 43, and 63 kDa. The distribution of the A gene among strains of B. sphaericus of different toxicities suggested that it is the sole or principal gene encoding the larvicidal crystal protein. The two recombinants of group B and the 23 of group C were all beta-galactosidase fusion proteins, suggesting that in E. coli these genes were not readily expressed from their own promoters. The distribution of these two genes in different strains of B. sphaericus suggested that they do not have a role in the toxicity of this species to mosquito larvae.  相似文献   

13.
Highly larvicidal strains of Bacillus sphaericus produce a binary toxin composed of 51 and 42 kDa proteins which binds to sharply delineated regions of the gastric caecum and posterior midgut of susceptible larvae of the mosquito Culex quinquefasciatus. To investigate the role of the individual subunits and the organization of functional binding regions within the toxin, plasmids were constructed for the expression in Escherichia coli of the toxin proteins and their NH2- and COOH-terminal deletion derivatives as fusions with glutathione S-transferase (GST). Toxin proteins were purified by affinity chromatography followed by cleavage from the GST carrier with thrombin. The LC50 values for the purified toxin proteins and their deletion derivatives were determined. The binding patterns of fluorescently labelled toxin suggested that the 51 kDa protein is the primary binding component of the toxin and mediates the regional binding and internalization of the 42 kDa protein. Examination of the toxin deletion derivatives revealed that the NH2-terminal region of the 51 kDa protein was required for binding to the larval gut, whilst the COOH-terminal region was responsible for interacting with the 42 kDa protein. Toxicity was strongly correlated with the subsequent internalization of the toxin, probably by endocytosis.  相似文献   

14.
W H Yap  T Thanabalu    A G Porter 《Applied microbiology》1994,60(11):4199-4202
A series of plasmids bearing the binary toxin genes of Bacillus sphaericus 2297 or 2317.3, the 100-kDa toxin gene of B. sphaericus SSII-1, or the 130-kDa (cryIVB) toxin gene of Bacillus thuringiensis subsp. israelensis were constructed and introduced into Ancylobacter aquaticus by electroporation. The transformed A. aquaticus cells exhibited significant toxicity towards mosquito larvae, demonstrating a potential use of recombinant A. aquaticus for biological control of mosquitoes.  相似文献   

15.
Gut proteinases from larvae of mosquito species both susceptible and not susceptible to Bacillus sphaericus converted the 43-kDa toxin to a 40-kDa polypeptide exhibiting enhanced cytotoxicity to mosquito cell cultures. The toxin was also activated by gut proteinases from the nonsusceptible Lepidoptera Spodoptera littoralis in vitro and in vivo. Therefore, the specificity of Bacillus sphaericus toxin does not seem to be determined by gut proteinase action. However, susceptibility of mosquito cell cultures did not reflect the specificity of the toxin, which must now be investigated at the cellular level in the larvae.  相似文献   

16.
球形芽孢杆菌杀蚊毒素蛋白及其 遗传操作研究进展   总被引:3,自引:0,他引:3  
袁志明  张用梅 《昆虫学报》1999,42(2):212-223
蚊虫是多种人类传染疾病的主要传播媒介,如疟疾、丝虫病、乙型脑炎、黄热病和登革热等,对人类的健康造成了极大的危害[1]。控制蚊虫被认为是消除这些蚊媒疾病的有效途径。在过去的45年里,尽管化学杀虫剂和各种抗病药物的使用对降低疟疾和蚊媒疾病的发病率和死亡率...  相似文献   

17.
球形芽孢杆菌Ts—1毒蛋白的分离纯化   总被引:3,自引:2,他引:1  
Bacillus sphaericus strain Ts-1 is highly insecticidal to larvae of the mosquito. It's insecticidal component is toxic proteins. The toxin was extracted from spore-crystal complexes by disruption in a Sonicator Cell Disruptor Model W-220F followed by treatment with 0.05 mol/L NaOH. Fraction recovered from chromatography of the spore-crystal complexes on column of Sephadex G-200 were assayed against mosquito larvae and the toxic fractions from gel chromatography were subjected to SDS-PAGE. The toxic proteins in B. sphaericus Ts-1 spore-crystal complex migrated in position corresponding to 42kD and 43kD. Bioassay of the two purified proteins prepared by PAGE indicated that they were all toxic to mosquito larvae. Toxic protein was further purified by DEAE-cellulose chromatography. The toxic protein with a molecular weight of 42kD was obtained.  相似文献   

18.
Crystals were purified from spore-crystal complexes of Bacillus sphaericus 2362 by disruption in a French pressure cell followed by centrifugation through 48% (wt/vol) NaBr. Crystals from such preparations had a 50% lethal concentration of 6 ng of protein per ml for the larvae of the mosquito Culex pipiens. When subjected to polyacrylamide gel electrophoresis under denaturing conditions, the proteins in B. sphaericus crystals migrated in positions corresponding to 43, 63, 98, 110, and 125 kilodaltons (kDa); solubilization of the crystal at pH 12 with NaOH eliminated all but the bands at 43 and 63 kDa. Since NaOH-solubilized preparations were toxic to mosquito larvae, these proteins were purified to electrophoretic homogeneity and antiserum was obtained to each. Analysis of the two purified proteins indicated that the 43-kDa protein was toxic to mosquito larvae (50% lethal concentration, 35 ng of protein per ml), whereas the 63-kDa protein was not. Further differences between them were their amino acid compositions, their lack of immunological cross-reactivity, their opposite net charges at pH 7.5, and their susceptibility to digestion by larval midgut proteases (the 63-kDa protein was highly susceptible, whereas the 43-kDa protein was not). The sequence of the 40 N-terminal residues of the 43-kDa protein was determined and found to contain a high percentage of hydrophobic amino acids. The sequence of the 63-kDa protein could not be determined, since it had multiple N termini. By electrophoretically separating the crystal proteins and then electroblotting onto nitrocellulose paper and visualizing the bands with antisera to the 43- and 63-kDa proteins in conjunction with an immunoblot assay, it was found that the high-molecular-mass crystal proteins (98 to 125 kDa) contained antigenic determinants of both proteins. These results suggested that the lower-molecular-weight crystal proteins detected in polyacrylamide gels after electrophoresis under denaturing conditions were derivatives of one or more of the higher-molecular-weight crystal proteins. In vivo studies of the products of crystal degradation by larvae of Culex pipiens indicated that the high-molecular-weight proteins and the 63-kDa antigenic determinants were rapidly degraded and that a 40-kDa protein related to the 43-kDa toxin persisted for the duration of the experiment (4 h). Some of the studies performed with B.sphaericus 2362 were extended to strains 1593, 1691, and 2297 of this species with results which indicated a high degree of similarity between the crystal proteins of all these larvicidal strains.  相似文献   

19.
Culex pipiens larval midgut is the primary target of the binary toxin (Bin) present in parasporal inclusions of Bacillus sphaericus. Cpm1, a 60-kDa protein purified from brush border membranes, has been proposed as the receptor of the Bin toxin in the midgut epithelial cells of mosquitoes. We have cloned and characterized the corresponding cDNA from midgut of Culex pipiens larvae. The open reading frame predicted a 580 amino-acid protein with a putative signal peptide at the N-terminus and a putative GPI-anchoring signal at the C-terminus. The amino acid sequence of the cloned Cpm1 exhibited 39-43% identities with insect maltases (alpha-glucosidases and alpha-amylases). Recombinant Cpm1 expressed in E. coli specifically bound to the Bin toxin and had a significant alpha-glucosidase activity but no alpha-amylase activity. These results support the view that Cpm1 is an alpha-glucosidase expressed in Culex midgut where it constitutes the receptor for the Bin toxin. To date, this is the first component involved in the mosquitocidal activity of the Bacillus sphaericus Bin toxin to be characterized. Its identification provides a key step to elucidate the mode of action of the Bin toxin and the mechanisms of resistance developed against it by some mosquito strains.  相似文献   

20.
Larvae of Culex quinquefasciatus are much more susceptible to the toxin of Bacillus sphaericus than are larvae of Aedes aegypti. In the present study, the rate of ingestion, dissolution, and the cleavage by midgut proteases of the B. sphaericus toxin were compared in larvae of these species to determine whether these factors account for the differences in susceptibility. During filter feeding, larvae of both species removed significant quantities of B. sphaericus toxin from suspensions. Filtration rates for 1 hr, the time at which C. quinquefasciatus exhibited marked intoxication, were higher for A. aegypti (576-713 microliters/larva/hr) than for C. quinquefasciatus (446-544 microliters/larva/hr). Within 24 hr of exposure, A. aegypti larvae ingested 97-99% of the toxin particulates and suffered not more than 10% mortality in suspensions which induced complete mortality in C. quinquefasciatus within 2 hr of exposure. Quantification of the particulate toxin present in larvae after exposure to B. sphaericus suspensions revealed that larvae of both species contained only minor amounts of the toxin, suggesting the larvae had been able to solubilize the toxin after ingestion. Proteases recovered from the feces of larvae cleaved at 43-kDa protein isolated from B. sphaericus toxin extract to 40 kDa in both species. Thus, differences in susceptibility to the B. sphaericus toxin between A. aegypti and C. quinquefasciatus are not due to differences in rates of ingestion, dissolution, or the specificity of proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号