首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Maximum photosynthetic capacity indicates that the Antarctic psychrophile Chlamydomonas raudensis H. Ettl UWO 241 is photosynthetically adapted to low temperature. Despite this finding, C. raudensis UWO 241 exhibited greater sensitivity to low‐temperature photoinhibition of PSII than the mesophile Chlamydomonas reinhardtii P. A. Dang. However, in contrast with results for C. reinhardtii, the quantum requirement to induce 50% photoinhibition of PSII in C. raudensis UWO 241 (50 μmol photons) was comparable at either 8°C or 29°C. To our knowledge, this is the first report of a photoautotroph whose susceptibility to photoinhibition is temperature independent. In contrast, the capacity of the psychrophile to recover from photoinhibition of PSII was sensitive to temperature and inhibited at 29°C. The maximum rate of recovery from photoinhibition of the psychrophile at 8°C was comparable to the maximum rate of recovery of the mesophile at 29°C. We provide evidence that photoinhibition in C. raudensis UWO 241 is chronic rather than dynamic. The photoinhibition‐induced decrease in the D1 content in C. raudensis recovered within 30 min at 8°C. Both the recovery of the D1 content as well as the initial fast phase of the recovery of Fv/Fm at 8°C were inhibited by lincomycin, a chloroplast protein synthesis inhibitor. We conclude that the susceptibility of C. raudensis UWO 241 to low‐temperature photoinhibition reflects its adaptation to low growth irradiance, whereas the unusually rapid rate of recovery at low temperature exhibited by this psychrophile is due to a novel D1 repair cycle that is adapted to and is maximally operative at low temperature.  相似文献   

2.
The psychrophilic Antarctic alga, Chlamydomonas raudensis Ettl (UWO241), grows under an extreme environment of low temperature and low irradiance of a limited spectral quality (blue‐green). We investigated the ability of C. raudensis to acclimate to long‐term imbalances in excitation caused by light quality through adjustments in photosystem stoichiometry. Log‐phase cultures of C. raudensis and C. reinhardtii grown under white light were shifted to either blue or red light for 12 h. Previously, we reported that C. raudensis lacks the ability to redistribute light energy via the short‐term mechanism of state transitions. However, similar to the model of mesophilic alga, C. reinhardtii, the psychrophile retained the capacity for long‐term adjustment in energy distribution between PSI and PSII by modulating the levels of PSI reaction center polypeptides, PsaA/PsaB, with minimal changes in the content of the PSII polypeptide, D1, in response to changes in light quality. The functional consequences of the modulation in PSI/PSII stoichiometry in the psychrophile were distinct from those observed in C. reinhardtii. Exposure of C. raudensis to red light caused 1) an inhibition of growth and photosynthetic rates, 2) an increased reduction state of the intersystem plastoquinone pool with concomitant increases in nonphotochemical quenching, 3) an uncoupling of the major light‐harvesting complex from the PSII core, and 4) differential thylakoid protein phosphorylation profiles compared with C. reinhardtii. We conclude that the characteristic low levels of PSI relative to PSII set the limit in the capacity of C. raudensis to photoacclimate to an environment enriched in red light.  相似文献   

3.
The Antarctic psychrophilic green alga Chlamy‐domonas sp. UWO 241 is an emerging model for studying microbial adaptation to polar environments. However, little is known about its evolutionary history and its phylogenetic relationship with other chlamydomonadalean algae is equivocal. Here, we attempt to clarify the phylogenetic position of UWO 241, specifically with respect to Chlamydomonas rau‐densis SAG 49.72. Contrary to a previous report, we show that UWO 241 is a distinct species from SAG 49.72. Our phylogenetic analyses of nuclear and plastid DNA sequences reveal that UWO 241 represents a unique lineage within the Moewusinia clade (sensu Nakada) of the Chlamydomonadales (Chlorophyceae, Chlorophyta), closely affiliated to the marine species Chlamydomonas parkeae SAG 24.89.  相似文献   

4.
5.
Chlamydomonas raudensis Ettl UWO241, a natural variant of C. raudensis, is deficient in state transitions. Its habitat, the deepest layer of Lake Bonney in Antarctica, features low irradiance, low temperature, and high salinity. Although psychrophily and low-light acclimation of this green alga has been described, very little information is available on the effect of salinity. Here, we demonstrate that this psychrophile is halotolerant, not halophilic, and it shows energy redistribution between photosystem I and II based on energy spillover under low-salt conditions. Furthermore, we revealed that C. raudensis exhibits higher non-photochemical quenching in comparison with the mesophile Chlamydomonas reinhardtii, when grown with low-salt, which is due to the lower proton conductivity across the thylakoid membrane. Significance of the C. raudensis UWO241 traits found in the low salinity culture are implicated with their natural habitats, including the high salinity and extremely stable light environments.  相似文献   

6.
7.
8.
Life in extreme environments poses unique challenges to photosynthetic organisms. The ability for an extremophilic green alga and its genetic and mesophilic equivalent to acclimate to changes in their environment was examined to determine the extent of their phenotypic plasticities. The Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241 (UWO) was isolated from an ice-covered lake in Antarctica, whereas its mesophilic counterpart C. raudensis Ettl. SAG 49.72 (SAG) was isolated from a meadow pool in the Czech Republic. The effects of changes in temperature and salinity on growth, morphology, and photochemistry were examined in the two strains. Differential acclimative responses were observed in UWO which include a wider salinity range for growth, and broader temperature- and salt-induced fluctuations in F(v)/F(m), relative to SAG. Furthermore, the redox state of the photosynthetic electron transport chain, measured as 1-q(P), was modulated in the extremophile whereas this was not observed in the mesophile. Interestingly, it is shown for the first time that SAG is similar to UWO in that it is unable to undergo state transitions. The different natural histories of these two strains exert different evolutionary pressures and, consequently, different abilities for acclimation, an important component of phenotypic plasticity. In contrast to SAG, UWO relied on a redox sensing and signalling system under the growth conditions used in this study. It is proposed that growth and adaptation of UWO under a stressful and extreme environment poises this extremophile for better success under changing environmental conditions.  相似文献   

9.
Beth Szyszka 《BBA》2007,1767(6):789-800
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 °C and 28 °C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (ΦNPQ) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (ΦNO). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

10.
Permanently cold habitats dominate our planet and psychrophilic microorganisms thrive in cold environments. Environmental adaptations unique to psychrophilic microorganisms have been thoroughly described; however, the vast majority of studies to date have focused on cold-adapted bacteria. The combination of low temperatures in the presence of light is one of the most damaging environmental stresses for a photosynthetic organism: in order to survive, photopsychrophiles (i.e. photosynthetic organisms adapted to low temperatures) balance temperature-independent reactions of light energy capture/transduction with downstream temperature-dependent metabolic processes such as carbon fixation. Here, we review research on photopsychrophiles with a focus on an emerging model organism, Chlamydomonas raudensis UWO241 (UWO241). UWO241 is a psychrophilic green algal species and is a member of the photosynthetic microbial eukaryote community that provides the majority of fixed carbon for ice-covered lake ecosystems located in the McMurdo Dry Valleys, Antarctica. The water column exerts a range of environmental stressors on the phytoplankton community that inhabits this aquatic ecosystem, including low temperatures, extreme shade of an unusual spectral range (blue-green), high salinity, nutrient deprivation and extremes in seasonal photoperiod. More than two decades of work on UWO241 have produced one of our most comprehensive views of environmental adaptation in a cold-adapted, photosynthetic microbial eukaryote.  相似文献   

11.
Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii ΔpetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii ΔpetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of C. reinhardtii wild type. However, the C. reinhardtii petA transformants accumulated lower levels of cytochrome b 6 /f complexes and exhibited lower light saturated rates of O2 evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability to adaptation to cold environments. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
Cook  Greg  Teufel  Amber  Kalra  Isha  Li  Wei  Wang  Xin  Priscu  John  Morgan-Kiss  Rachael 《Photosynthesis research》2019,141(2):209-228

Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C. sp. UWO241 exhibits constitutive downregulation of photosystem I (PSI) and high rates of PSI-associated cyclic electron flow (CEF). Iron levels in ELB are in the nanomolar range leading us to hypothesize that the unusual PSI phenotype of C. sp. UWO241 could be a response to chronic Fe-deficiency. We studied the impact of Fe availability in C. sp. UWO241, a mesophile, C. reinhardtii SAG11-32c, as well as a psychrophile isolated from the shallow photic zone of ELB, Chlamydomonas sp. ICE-MDV. Under Fe-deficiency, PsaA abundance and levels of photooxidizable P700 (ΔA820/A820) were reduced in both psychrophiles relative to the mesophile. Upon increasing Fe, C. sp. ICE-MDV and C. reinhardtii exhibited restoration of PSI function, while C. sp. UWO241 exhibited only moderate changes in PSI activity and lacked almost all LHCI proteins. Relative to Fe-excess conditions (200 µM Fe2+), C. sp. UWO241 grown in 18 µM Fe2+ exhibited downregulation of light harvesting and photosystem core proteins, as well as upregulation of a bestrophin-like anion channel protein and two CEF-associated proteins (NdsS, PGL1). Key enzymes of starch synthesis and shikimate biosynthesis were also upregulated. We conclude that in response to variable Fe availability, the psychrophile C. sp. UWO241 exhibits physiological plasticity which includes restructuring of the photochemical apparatus, increased PSI-associated CEF, and shifts in downstream carbon metabolism toward storage carbon and secondary stress metabolites.

  相似文献   

13.
通过对莱茵衣藻849及其转基因衣藻lba进行光照强度、细胞浓度和培养基中硫酸盐含量三因素三水平的正交实验,确定了两个藻种的最佳产氢条件,同时对转基因藻和849产氢培养条件下的光合放氧速率和pH进行了检测。实验结果表明,在25 ℃下,莱茵衣藻849和转基因衣藻lba的最佳产氢条件都为光照强度 60μmol/(m2·s),细胞浓度为叶绿素含量12.5μg/ml,培养基中硫酸盐含量0μmol/L。莱茵衣藻849和转基因衣藻lba的最高氢气产量分别达到了349μl/mg chlorophyll 和634μl/mg chlorophyll。在产氢条件下,转基因藻lba的净光合放氧速率比849低。结果为利用豆血红蛋白特性通过基因工程手段提高莱茵衣藻产氢量提供基础实验数据。  相似文献   

14.
The superficial cell wall ornamentation in the zygospores of the alga Chlamydomonas geitleri Ettl (Chlorophyta) is formed by thickenings of the cell wall which are shaped into a network of anastomosing ribs, sometimes with local wart-like protuberances. Clearly different sculpture patterns (given by presence, arrangement and/or morphological modification of sculpture elements) were accompanied by many transient forms. Sculpture variations occurred even in clonal cultures. In the zygospore cell wall of C. geitleri, the inner, outer and middle layer can be distinguished from the morphological point of view. The relatively thin outer (sporopollenin) layer covers the whole surface of the zygospore wall. The thicker inner layer adhering to the zygospore protoplast forms, either solely or together with the middle layer (possessing a fine meshwork substructure), variously shaped thickening of the zygospore cell wall. Discussed are the ultrastructural morphology of the cell wall in Chlamydomonas zygospores, the striking similarity of the cell wall ultrastructure of zygospores in C. geitleri to the ultrastructure of the cell wall of vegetative cells in some green algae (subfamily Scotiellocystoideae), as well as the extensive morphological variability of the zygospore wall sculpture in C geitleri and its species specificity.  相似文献   

15.
The nuclear Rrn18 gene coding for small-subunit ribosomal RNA was amplified from Chlamydomonas humicola and C. dysosmos. The sequences were identical, in agreement with the combination of these two species under the name C. applanata on morphological and physiological grounds by Ettl and Schlösser (1992).  相似文献   

16.
Monostroma latissimum (Kuetzing) Wittrock is a monostromatic green alga of commercial importance in Japan. Here we report the serendipitous discovery of asexually reproducing specimens collected from Usa, on the Pacific coast of Kochi Prefecture, south-western Japan. Zoids were found to be biflagellate and negatively phototactic. Germination of settled zoids was observed to follow erect-filamentous ontogeny similar to that of the previously reported sexual strain. Moreover, the newly discovered asexual strain had identical sequences of nuclear encoded ITS (Internal Transcribed Spacer) region to that of the sexual strain. On the basis of this finding, we postulate that the ITS sequences may have been maintained in these conspecific strains despite the evolution in sexuality. Relationships were investigated among M. latissimum and other monostromatic taxa within the class Ulvophyceae using ITS sequences in order to understand relative phylogenetic position of this species.  相似文献   

17.
1. The unicellular green alga Chlamydomonas acidophila accumulates in a thin phytoplankton layer in the hypolimnion (deep chlorophyll maximum, DCM) of an extremely acidic lake (Lake 111, pH 2.6, Lusatia, Germany), in which the underwater light spectrum is distorted and red‐shifted. 2. Chlamydomonas acidophila exhibited a significantly higher absorption efficiency and a higher cellular chlorophyll b content when incubated in the red shifted underwater light of Lake 111 than in a typical, blue‐green dominated, light spectrum. 3. Chlamydomonas acidophila has excellent low light acclimation properties (increased chlorophyll b content, increased oxygen yield and a low light saturation point for photosynthesis) that support survival of the species in the low light climate of the DCM. 4. In situ acclimation to the DCM under low light and temperature decreased maximum photosynthetic rate in autotrophic C. acidophila cultures, whereas the presence of glucose under these conditions enhanced photosynthetic efficiency and capacity. 5. The adaptive abilities of C. acidophila to light and temperature shown in this study, in combination with the absence of potent competitors because of low lake pH, most probably enable the unusual dominance of the green alga in the DCM of Lake 111.  相似文献   

18.
Using a monoclonal antibody to the alternative oxidase from voodoo lily, we provide evidence that the green alga Chlamydomonas reinhardtii Dang, possesses a protein that is immunologically related to the higher plant alternative oxidase. Mitochondria were isolated from a cell wall-less mutant strain (CW-15), and the presence of cyanide-resistant oxygen consumption was confirmed in these mitochondria. The voodoo lily antibody was used as a probe for immunoblotting of sodium dodecyl sulphate-polyacrylamide gel electrophoresis gels of mitochondrial proteins of C. reinhardtii. The antibody reacted with a protein from C. reinhardtii with the same molecular mass (36 kDa) as the alternative oxidase from voodoo lily and tobacco mitochondria. These results suggest that cyanide-resistant respiration in C. reinhardtii is mediated by a higher plant-type alternative oxidase.  相似文献   

19.
We examined the short-term metabolic processes of arsenate for 24 h in a freshwater unicellular green alga, Chlamydomonas reinhardtii wild-type strain CC-125. The arsenic species in the algal extracts were identified by high-performance liquid chromatography/inductively coupled plasma mass spectrometry after water extraction using a sonicator. Speciation analyses of arsenic showed that the levels of arsenite, arsenate, and methylarsonic acid in the cells rapidly increased for 30 min to 1 h, and those of dimethylarsinic acid and oxo-arsenosugar-glycerol also tended to increase continuously for 24 h, while that of oxo-arsenosugar-phosphate was quite low and fluctuated throughout the experiment. These results indicate that this alga can rapidly biotransform arsenate into oxo-arsenosugar-glycerol for at least 10 min and then oxo-arsenosugar-phosphate through both reduction of incorporated arsenate to arsenite and methylation of arsenite and/or arsenate retained in the cells to dimethylarsinic acid via methylarsonic acid as an possible intermediate.  相似文献   

20.
Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the "photopsychrophiles") in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10 degrees C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号