首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The DNA damage checkpoint prevents the onset of DNA replication and mitosis when cells are exposed to genotoxic stress. However, it is not clear how cells react to DNA damage, in particular to DNA double strand breaks (DSBs) once they are in mitosis. Using Xenopus laevis egg extract as model system we have uncovered an ATM and ATR dependent checkpoint that targets centrosome dependent spindle assembly in the presence of chromosome breaks. This pathway relies on the phosphorylation by ATM and ATR of a novel centrosomal protein CEP63. We showed that CEP63 is required for proper spindle assembly in Xenopus and chicken DT40 cells. Phosphorylation of CEP63 by ATM and ATR leads to its delocalization from centrosomes and impairs its ability to promote centrosome dependent spindle assembly. These findings further support links uncovered in other model systems between the DNA damage checkpoint and centrosome in maintaining genome stability.  相似文献   

2.
The checkpoint kinase Chk1 is an established transducer of ATR- and ATM-dependent signalling in response to DNA damage. In addition to its nuclear localization, Chk1 localizes to interphase centrosomes and thereby negatively regulates entry into mitosis by preventing premature activation of cyclin B-Cdk1 during unperturbed cell cycles. Here, we demonstrate that DNA damage caused by ultraviolet irradiation or hydroxyurea treatment leads to centrosomal accumulation of endogenous Chk1 in normal human BJ fibroblasts and in ATR- or ATM-deficient fibroblasts. Chemical inhibition of ATR/ATM by caffeine led to enhanced centrosomal Chk1 deposition associated with nuclear Chk1 depletion. In contrast to normal or ATM-deficient fibroblasts, genetically ATR-deficient Seckel-fibroblasts showed detectable constitutive centrosomal accumulation of Chk1 even in the absence of exogenous insults. After DNA damage, the centrosomal fraction of Chk1 was found to be phosphorylated at ATR/ATM phosphorylation sites. Forced immobilization of kinase-inactive but not wild-type Chk1 to centrosomes resulted in a G2/M checkpoint defect. Finally, both DNA damage, and forced centrosomal expression of Chk1 in the absence of genotoxic treatments, induced centrosome amplification in a subset of cells, a phenomenon which could be suppressed by inhibition of ATM/ATR-mediated signaling. Taken together, our results suggest that accumulation of phosphorylated Chk1 at centrosomes constitutes an additional element in the DNA damage response. Centrosomal Chk1 induces G2/M cell cycle arrest and may evoke centrosome amplification, the latter possibly providing a backup mechanism for elimination of cells with impaired DNA damage checkpoints operating earlier during the cell cycle.  相似文献   

3.
Two major control systems regulate early stages of mitosis: activation of Cdk1 and anaphase control through assembly and disassembly of the mitotic spindle. In parallel to cell cycle progression, centrosomal duplication is regulated through proteins including Nek2. Recent studies suggest that centrosome-localized Chk1 forestalls premature activation of centrosomal Cdc25b and Cdk1 for mitotic entry, whereas Chk2 binds centrosomes and arrests mitosis only after activation by ATM and ATR in response to DNA damage. Here, we show that Chk2 centrosomal binding does not require DNA damage, but varies according to cell cycle progression. These and other data suggest a model in which binding of Chk2 to the centrosome at multiple cell cycle junctures controls co-localization of Chk2 with other cell cycle and centrosomal regulators.Key words: Chk2, centrosome, checkpoint, DNA damage, wild type, kinase-defective  相似文献   

4.
Centrosomes are cytoplasmic organelles playing a fundamental role in organizing both the interphase cytoskeleton and the bipolar mitotic spindle. In addition, the centrosome has recently come into focus as part of the network that integrates cell cycle arrest and repair signals in response to genotoxic stress--the DNA damage response. One important mediator of this response, the checkpoint kinase Chk1, has been shown to negatively regulate the G(2)/M transition via its centrosomal localization. Moreover, there is growing evidence that a centrosome inactivation checkpoint exists, which utilizes DNA damage-induced centrosome fragmentation or amplification to provoke a "mitotic catastrophe" and eliminate damaged cells. Candidate regulators of this centrosomal checkpoint include the checkpoint kinase Chk2 and its upstream regulators ATM and ATR. In addition, a growing number of other proteins have been implicated in centrosomal regulation of the DNA damage response, e.g. the tumor suppressor p53, the breast cancer susceptibility gene product BRCA1 and mitotic regulators such as Aurora A, Nek2 and the Polo-like kinases Plk1 and Plk3. However, many missing links and discrepancies between different model systems remain.  相似文献   

5.
Two major control systems regulate early stages of mitosis: activation of Cdk1 and anaphase control through assembly and disassembly of the mitotic spindle. In parallel to cell cycle progression, centrosomal duplication is regulated through proteins including Nek2. Recent studies suggest that centrosome-localized Chk1 forestalls premature activation of centrosomal Cdc25b and Cdk1 for mitotic entry, whereas Chk2 binds centrosomes and arrests mitosis only after activation by ATM and ATR in response to DNA damage. Here, we show that Chk2 centrosomal binding does not require DNA damage, but varies according to cell cycle progression. These and other data suggest a model in which binding of Chk2 to the centrosome at multiple cell cycle junctures controls co-localization of Chk2 with other cell cycle and centrosomal regulators.  相似文献   

6.
The maternally expressed C. elegans gene spd-5 encodes a centrosomal protein with multiple coiled-coil domains. During mitosis in mutants with reduced levels of SPD-5, microtubules assemble but radiate from condensed chromosomes without forming a spindle, and mitosis fails. SPD-5 is required for the centrosomal localization of gamma-tubulin, XMAP-215, and Aurora A kinase family members, but SPD-5 accumulates at centrosomes in mutants lacking these proteins. Furthermore, SPD-5 interacts genetically with a dynein heavy chain. We propose that SPD-5, along with dynein, is required for centrosome maturation and mitotic spindle assembly.  相似文献   

7.
Mutations in the p53 tumor suppressor gene locus predispose human cells to chromosomal instability. This is due in part to interference of mutant p53 proteins with the activity of the mitotic spindle and postmitotic cell cycle checkpoints. Recent data demonstrates that wild type p53 is required for postmitotic checkpoint activity, but plays no role at the mitotic spindle checkpoint. Likewise, structural dominant p53 mutants demonstrate gain-of-function properties at the mitotic spindle checkpoint and dominant negative properties at the postmitotic checkpoint. At mitosis, mutant p53 proteins interfere with the control of the metaphase-to-anaphase progression by up-regulating the expression of CKs1, a protein that mediates activatory phosphorylation of the anaphase promoting complex (APC) by Cdc2. Cells that carry mutant p53 proteins overexpress CKs1 and are unable to sustain APC inactivation and mitotic arrest. Thus, mutant p53 gain-of-function at mitosis constitutes a key component to the origin of chromosomal instability in mutant p53 cells.  相似文献   

8.
Cancer cells contain an abnormal number of chromosomes (aneuploidy), which is a prevalent form of genetic instability in human cancers. Abnormal amplification of centrosomes and defects of spindle assembly checkpoint are the major causes of chromosome instability in cancer cells. Here we present biochemical evidence to suggest a role of ECRG2, a novel tumor suppressor gene, in maintaining chromosome stability. ECRG2 localized to centrosomes during interphase and kinetochores during mitosis. Further analysis revealed that ECRG2 participates in centrosome amplification in a p53-dependent manner. Depletion of ECRG2 not only destabilized p53, down-regulated p21, and increased the cyclin E/CDK2 activity, thus initiating centrosome amplification, but also abolished the ability of p53 localize to centrosomes. Overexpression of ECRG2 restored the p53-dependent suppression of centrosome duplication. Furthermore, ECRG2-depleted cells show severely disrupted spindle phenotype but fail to maintain the mitotic arrest due to minimal BUBR1 protein levels. Taken together, our results indicate that ECRG2 is important for ensuring centrosome duplication, spindle assembly checkpoint, and accurate chromosome segregation, and its depletion may contribute to chromosome instability and aneuploidy in human cancers.  相似文献   

9.
vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2   总被引:1,自引:0,他引:1  
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubule and the kinetochore. Our recent ultrastructural studies demonstrated a dynamic distribution of TTK, from the kinetochore to the centrosome, as cell enters into anaphase. Here, we show that a centrosomal protein TACC2 is phosphorylated in mitosis by TTK signaling pathway. TACC2 was pulled down by wild type TTK but not kinase death mutant, suggesting the potential phosphorylation-mediated interaction between these two proteins. Our immunofluorescence studies revealed that both TTK and TACC2 are located to the centrosome. Interestingly, expression of kinase death mutant of TTK eliminated the centrosomal localization of TACC2 but not other centrosomal proteins such as gamma-tubulin and NuMA, a phenotype seen in TTK-depleted cells. In these centrosomal TACC2-liberated cells, chromosomes were lagging and mis-aligned. In addition, the distance between two centrosomes was markedly reduced, suggesting that centrosomal TACC2 is required for mitotic spindle maintenance. The inter-relationship between TTK and TACC2 established here provides new avenue to study centrosome and spindle dynamics underlying cell divisional control.  相似文献   

10.
11.
CEP215 is a human orthologue of Drosophila centrosomin which is a core centrosome component for the pericentriolar matrix protein recruitment. Recent investigations revealed that CEP215 is required for centrosome cohesion, centrosomal attachment of the g-TuRC, and microtubule dynamics. However, it remains to be obscure how CEP215 functions for recruitment of the centrosomal proteins during the centrosome cycle. Here, we investigated a role of CEP215 during mitosis. Knockdown of CEP215 resulted in characteristic mitotic phenotypes, including monopolar spindle formation, a decrease in distance between the spindle pole pair, and detachment of the centrosomes from the spindle poles. We noticed that CEP215 is critical for centrosomal localization of dynein throughout the cell cycle. As a consequence, the selective centrosomal proteins were not recruited to the centrosome properly. Finally, the centrosomal localization of CEP215 also depends on the dynein-dynactin complex. Based on the results, we propose that CEP215 regulates a dynein-dependent transport of the pericentriolar matrix proteins during the centrosome maturation.  相似文献   

12.
Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest   总被引:2,自引:0,他引:2  
Centrosomes organize the microtubule cytoskeleton for both interphase and mitotic functions. They are implicated in cell-cycle progression but the mechanism is unknown. Here, we show that depletion of 14 out of 15 centrosome proteins arrests human diploid cells in G1 with reduced Cdk2-cyclin A activity and that expression of a centrosome-disrupting dominant-negative construct gives similar results. Cell-cycle arrest is always accompanied by defects in centrosome structure and function (for example, duplication and primary cilia assembly). The arrest occurs from within G1, excluding contributions from mitosis and cytokinesis. The arrest requires p38, p53 and p21, and is preceded by p38-dependent activation and centrosomal recruitment of p53. p53-deficient cells fail to arrest, leading to centrosome and spindle dysfunction and aneuploidy. We propose that loss of centrosome integrity activates a checkpoint that inhibits G1-S progression. This model satisfies the definition of a checkpoint in having three elements: a perturbation that is sensed, a transducer (p53) and a receiver (p21).  相似文献   

13.
Entry into mitosis occurs after activation of Cdk1, resulting in chromosome condensation in the nucleus and centrosome separation, as well as increased microtubule nucleation activity in the cytoplasm. The active cyclin-B1-Cdk1 complex first appears at the centrosome, suggesting that the centrosome may facilitate the activation of mitotic regulators required for the commitment of cells to mitosis. However, the signalling pathways involved in controlling the initial activation of Cdk1 at the centrosome remain largely unknown. Here, we show that human Chk1 kinase localizes to interphase, but not mitotic, centrosomes. Chemical inhibition of Chk1 resulted in premature centrosome separation and activation of centrosome-associated Cdk1. Forced immobilization of kinase-inactive Chk1 to centrosomes also resulted in premature Cdk1 activation. Conversely, under such conditions wild-type Chk1 impaired activation of centrosome-associated Cdk1, thereby resulting in DNA endoreplication and centrosome amplification. Activation of centrosomal Cdk1 in late prophase seemed to be mediated by cytoplasmic Cdc25B, whose activity is controlled by centrosome-associated Chk1. These results suggest that centrosome-associated Chk1 shields centrosomal Cdk1 from unscheduled activation by cytoplasmic Cdc25B, thereby contributing to proper timing of the initial steps of cell division, including mitotic spindle formation.  相似文献   

14.
BRCA1 is a DNA damage response protein and functions in the nucleus to stimulate DNA repair and at the centrosome to inhibit centrosome overduplication in response to DNA damage. The loss or mutation of BRCA1 causes centrosome amplification and abnormal mitotic spindle assembly in breast cancer cells. The BRCA1-BARD1 heterodimer binds and ubiquitinates γ-tubulin to inhibit centrosome amplification and promote microtubule nucleation; however regulation of BRCA1 targeting and function at the centrosome is poorly understood. Here we show that both N and C termini of BRCA1 are required for its centrosomal localization and that BRCA1 moves to the centrosome independently of BARD1 and γ-tubulin. Mutations in the C-terminal phosphoprotein-binding BRCT domain of BRCA1 prevented localization to centrosomes. Photobleaching experiments identified dynamic (60%) and immobilized (40%) pools of ectopic BRCA1 at the centrosome, and these are regulated by the nuclear export receptor CRM1 (chromosome region maintenance 1) and BARD1. CRM1 mediates nuclear export of BRCA1, and mutation of the export sequence blocked BRCA1 regulation of centrosome amplification in irradiated cells. CRM1 binds to undimerized BRCA1 and is displaced by BARD1. Photobleaching assays implicate CRM1 in driving undimerized BRCA1 to the centrosome and revealed that when BRCA1 subsequently binds to BARD1, it is less well retained at centrosomes, suggesting a mechanism to accelerate BRCA1 release after formation of the active heterodimer. Moreover, Aurora A binding and phosphorylation of BRCA1 enhanced its centrosomal retention and regulation of centrosome amplification. Thus, CRM1, BARD1 and Aurora A promote the targeting and function of BRCA1 at centrosomes.  相似文献   

15.
The regulatory mechanism of centrosome function is crucial to the accurate transmission of chromosomes to the daughter cells in mitosis. Recent findings on the posttranslational modifications of many centrosomal proteins led us to speculate that these modifications might be involved in centrosome behavior. Poly(ADP-ribose) polymerase 1 (PARP-1) catalyzes poly(ADP-ribosyl)ation to various proteins. We show here that PARP-1 localizes to centrosomes and catalyzes poly(ADP-ribosyl)ation of centrosomal proteins. Moreover, centrosome hyperamplification is frequently observed with PARP inhibitor, as well as in PARP-1-null cells. Thus, it is possible that chromosomal instability known in PARP-1-null cells can be attributed to the centrosomal dysfunction. P53 tumor suppressor protein has been also shown to be localized at centrosomes and to be involved in the regulation of centrosome duplication and monitoring of the chromosomal stability. We found that centrosomal p53 is poly(ADP-ribosyl)ated in vivo and centrosomal PARP-1 directly catalyzes poly(ADP-ribosyl)ation of p53 in vitro. These results indicate that PARP-1 and PARP-1-mediated poly(ADP-ribosyl)ation of centrosomal proteins are involved in the regulation of centrosome function.  相似文献   

16.
Yang C  Tang X  Guo X  Niikura Y  Kitagawa K  Cui K  Wong ST  Fu L  Xu B 《Molecular cell》2011,44(4):597-608
The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell-cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in shortened mitotic timing and a defective spindle checkpoint, and that abrogation of ATM Ser1403 phosphorylation leads to this spindle checkpoint defect. We also demonstrate that mitotically activated ATM phosphorylates Bub1, a critical kinetochore protein, on Ser314. ATM-mediated Bub1 Ser314 phosphorylation is required for Bub1 activity and is essential for the activation of the spindle checkpoint. Collectively, our data highlight mechanisms of a critical function of ATM in mitosis.  相似文献   

17.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

18.
E Bailly  M Dorée  P Nurse    M Bornens 《The EMBO journal》1989,8(13):3985-3995
The cdc2+ gene product p34cdc2 is located immunocytochemically in both the nucleus and cytoplasm of human cells. It is uniformly distributed throughout the cytoplasm and is irregularly distributed in the nucleus. Part of p34cdc2 is associated with the centrosome and centrosomal staining increases late in the cell cycle and at the onset of mitosis. This distribution is corroborated by cell fractionation which also indicates that slower migrating forms of p34cdc2 are found in isolated centrosomes and in Triton-insoluble fractions. We propose that one role of the p34cdc2 protein kinase is to modify the centrosome bringing about formation of the mitotic spindle. At anaphase p34cdc2 becomes associated with vesicles in the middle of the cell between the reforming nuclei. A similar location is found for p13suc1 and we suggest that the vesicular localization plays a role in p34cdc2 kinase inactivation at the end of mitosis.  相似文献   

19.
BACKGROUND: DNA damage during mitosis triggers an ATM kinase-mediated cell cycle checkpoint pathway in yeast and fly embryos that delays progression through division. Recent data suggest that this is also true for mammals. Here we used laser microsurgery and inhibitors of topoisomerase IIalpha to break DNA in various mammalian cells after they became committed to mitosis. We then followed the fate of these cells and emphasized the timing of mitotic progression, spindle structure, and chromosome behavior. RESULTS: We find that DNA breaks generated during late prophase do not impede entry into prometaphase. If the damage is minor, cells complete mitosis on time. However, more significant damage substantially delays exit from mitosis in many cell types. In human (HeLa, CFPAC-1, and hTERT-RPE) cells, this delay occurs during metaphase, after the formation of a bipolar spindle and the destruction of cyclin A, and it is not dependent on a functional p53 pathway. Pretreating cells with ATM kinase inhibitors does not abrogate the metaphase delay due to chromosome damage. Immunofluorescence studies reveal that cells blocked in metaphase by chromosome damage contain one or more Mad2-positive kinetochores, and the block is rapidly overridden when the cells are microinjected with a dominant-negative construct of Mad2 (Mad2deltaC). CONCLUSIONS: We conclude that the delay in mitosis induced by DNA damage is not due to an ATM-mediated DNA damage checkpoint pathway. Rather, the damage leads to defects in kinetochore attachment and function that, in turn, maintain the intrinsic Mad-2-based spindle assembly checkpoint.  相似文献   

20.
The centrosome is the main microtubule (MT)-organizing centre of animal cells. It consists of two centrioles and a multi-layered proteinaceous structure that surrounds the centrioles, the so-called pericentriolar material. Centrosomes promote de novo assembly of MTs and thus play important roles in Golgi organization, cell polarity, cell motility and the organization of the mitotic spindle. To execute these functions, centrosomes have to adopt particular cellular positions. Actin and MT networks and the association of the centrosomes to the nuclear envelope define the correct positioning of the centrosomes. Another important feature of centrosomes is the centrosomal linker that connects the two centrosomes. The centrosome linker assembles in late mitosis/G1 simultaneously with centriole disengagement and is dissolved before or at the beginning of mitosis. Linker dissolution is important for mitotic spindle formation, and its cell cycle timing has profound influences on the execution of mitosis and proficiency of chromosome segregation. In this review, we will focus on the mechanisms of centrosome positioning and separation, and describe their functions and mechanisms in the light of recent findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号