首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immune sensing of viral infection results in type I interferon (IFN) production and inflammasome activation. Type I IFNs, primarily IFN-α and IFN-β, are produced by all cell types upon virus infection and promote an antiviral state in surrounding cells by inducing the expression of IFN-stimulated genes. Type I IFN production is mediated by Toll-like receptor (TLR) 3 in HCV infected hepatocytes. Type I IFNs are also produced by plasmacytoid dendritic cells (pDC) after sensing of HIV and HCV through TLR7 in the absence of productive pDC infection. Inflammasomes are multi-protein cytosolic complexes that integrate several pathogen-triggered signaling cascades ultimately leading to caspase-1 activation and generation pro-inflammatory cytokines including interleukin (IL)-18 and IL-1β. Here, we demonstrate that HIV and HCV activate the inflammasome, but not Type I IFN production, in monocytes and macrophages in an infection-independent process that requires clathrin-mediated endocytosis and recognition of the virus by distinct endosomal TLRs. Knockdown of each endosomal TLR in primary monocytes by RNA interference reveals that inflammasome activation in these cells results from HIV sensing by TLR8 and HCV recognition by TLR7. Despite its critical role in type I IFN production by pDCs stimulated with HIV, TLR7 is not required for inflammasome activation by HIV. Similarly, HCV activation of the inflammasome in monocytes does not require TLR3 or its downstream signaling adaptor TICAM-1, while this pathway leads to type I IFN in infected hepatocytes. Monocytes and macrophages do not produce type I IFN upon TLR8 or TLR7 sensing of HIV or HCV, respectively. These findings reveal a novel infection-independent mechanism for chronic viral induction of key anti-viral programs and demonstrate distinct TLR utilization by different cell types for activation of the type I IFN vs. inflammasome pathways of inflammation.  相似文献   

2.
Interferons (IFNs) are a critical component of the first line of antiviral defense. The activation of Toll-like receptors (TLRs) expressed by dendritic cells triggers different signaling cascades that result in the production of large amounts of IFNs. However, the functional consequences of TLR activation and differential IFN production in specific cell populations other than antigen-presenting cells have not yet been fully elucidated. In this study, we investigated TLR expression and polarization in airway epithelial cells (AECs) and the consequences of TLR agonist stimulation for the production of type I (IFN-α/β) and type III (IFN-λ) IFNs. Our results show that the pattern of expression and polarization of all TLRs in primary AEC cultures mirrors that of the human airways ex vivo and is receptor specific. The antiviral TLRs (TLR3, TLR7, and TLR9) are mostly expressed on the apical cell surfaces of epithelial cells in the human trachea and in primary polarized AECs. Type III IFN is the predominant IFN produced by the airway epithelium, and TLR3 is the only TLR that mediates IFN production by AECs, while all TLR agonists tested are capable of inducing AEC activation and interleukin-8 production. In response to influenza virus infection, AECs can produce IFN-λ in an IFNAR- and STAT1-independent manner. Our results emphasize the importance of using primary well-differentiated AECs to study TLR and antiviral responses and provide further insight into the regulation of IFN production during the antiviral response of the lung epithelium.  相似文献   

3.
4.
Type I Interferon (IFN) is one of the first lines of defense against viral infection. Plasmacytoid dendritic cells (pDCs) are professional IFN-α-producing cells that play an important role in the antiviral immune response. Previous studies have reported that IFN-α production is impaired in chronic hepatitis B (CHB) patients. However, the mechanisms underlying the impairment in IFN-α production are not fully understood. Here, we report that plasma-derived hepatitis B surface antigen (HBsAg) and HBsAg expressed in CHO cells can significantly inhibit toll like receptor (TLR) 9-mediated Interferon-α (IFN-α) production in peripheral blood mononuclear cells (PBMCs) from healthy donors. Further analysis indicated that monocytes participate in the inhibitory effect of HBsAg on pDCs through the secretion of TNF-α and IL-10. Furthermore, TLR9 expression on pDCs was down-regulated by TNF-α, IL-10 and HBsAg treatment. This down-regulation may partially explain the inhibition of IFN-α production in pDCs. In conclusion, we determined that HBsAg inhibited the production of IFN-α by pDCs through the induction of monocytes that secreted TNF-α and IL-10 and through the down-regulation of TLR9 expression on pDCs. These data may aid in the development of effective antiviral treatments and lead to the immune control of the viral infections.  相似文献   

5.
Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies. Here we tested the effects of 300 traditional Chinese medicines on the replication of various influenza virus strains in a lung cell line, A549, using an influenza-specific luciferase reporter assay. Of the traditional medicines tested, Polygonum cuspidatum (PC) and its active components, resveratrol and emodin, were found to attenuate influenza viral replication in A549 cells. Furthermore, they preferentially inhibited the replication of influenza A virus, including clinical strains isolated in 2009 and 2011 in Taiwan and the laboratory strain A/WSN/33 (H1N1). In addition to inhibiting the expression of hemagglutinin and neuraminidase, PC, emodin, and resveratrol also increased the expression of interferon beta (IFN-β) through Toll-like receptor 9 (TLR9). Moreover, the anti-viral activity of IFN-β or resveratrol was reduced when the A549 cells were treated with neutralizing anti-IFN-β antibodies or a TLR9 inhibitor, suggesting that IFN-β likely acts synergistically with resveratrol to inhibit H1N1 replication. This potential antiviral mechanism, involving direct inhibition of virus replication and simultaneous activation of the host immune response, has not been previously described for a single antiviral molecule. In conclusion, our data support the use of PC, resveratrol or emodin for inhibiting influenza virus replication directly and via TLR-9–induced IFN-β production.  相似文献   

6.
7.
8.
The innate immune response mediated by cells such as natural killer (NK) cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN) family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV) significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11.  相似文献   

9.
Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology.  相似文献   

10.
αvβ3 integrin represents a novel sensing system which detects herpes simplex virus (HSV) and bacterial constituents. In cooperation with Toll-like receptor 2 (TLR2), it elicits an innate response that leads to activation of type I interferon (IFN), NF-κB, and a specific set of cytokines. We report that this defensive branch is functional in cells which represent experimental models of epithelial, including keratinocytic, and neuronal cells. These are the major targets of HSV in vivo. HSV entered the three cell lines via distinct routes. Hence, the defensive response was independent of the route of virus entry. Soluble gH/gL sufficed to elicit type I IFN and NF-κB activation and represents the viral pathogen-associated molecular pattern (PAMP) of this defense system.  相似文献   

11.
12.
13.
14.
15.
16.
Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized. In this study, we investigate the roles of TLR2, TLR9, UNC93B1, and the type I interferon (IFN) receptor in a murine model of HSV-1 encephalitis. TLR2 is responsible for detrimental inflammatory cytokine production following intracranial infection with HSV-1, and the absence of TLR2 expression leads to increased survival in mice. We prove that inflammatory cytokine production by microglial cells, astrocytes, neutrophils, and monocytes is mediated predominantly by TLR2. We also demonstrate that type I IFNs are absolutely required for survival following intracranial HSV-1 infection, as mice lacking the type I IFN receptor succumb rapidly following infection and have high levels of HSV in the brain. However, the absence of TLR9 does not impact survival, type I IFN levels, or viral replication in the brain following infection. The absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I IFN levels in the brain in HSV-1-infected mice. These results illustrate the complex but important roles that innate immune receptors play in host responses to HSV-1 during infection of the central nervous system.  相似文献   

17.
The coronavirus mouse hepatitis virus (MHV) induces a minimal type I interferon (IFN) response in several cell types in vitro despite the fact that the type I IFN response is important in protecting the mouse from infection in vivo. When infected with MHV, mice deficient in IFN-associated receptor expression (IFNAR−/−) became moribund by 48 h postinfection. MHV also replicated to higher titers and exhibited a more broad tissue tropism in these mice, which lack a type I IFN response. Interestingly, MHV induced IFN-β in the brains and livers, two main targets of MHV replication, of infected wild-type mice. MHV infection of primary cell cultures indicates that hepatocytes are not responsible for the IFN-β production in the liver during MHV infection. Furthermore, macrophages and microglia, but not neurons or astrocytes, are responsible for IFN-β production in the brain. To determine the pathway by which MHV is recognized in macrophages, IFN-β mRNA expression was quantified following MHV infection of a panel of primary bone marrow-derived macrophages generated from mice lacking different pattern recognition receptors (PRRs). Interestingly, MDA5, a PRR thought to recognize primarily picornaviruses, was required for recognition of MHV. Thus, MHV induces type I IFN in macrophages and microglia in the brains of infected animals and is recognized by an MDA5-dependent pathway in macrophages. These findings suggest that secretion of IFN-β by macrophages and microglia plays a role in protecting the host from MHV infection of the central nervous system.  相似文献   

18.

Background & Aims

The interferon (IFN) system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV) and hepatitis B virus (HBV).

Methods

This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC). Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs) in the livers and sera of these humanized chimeric mice.

Results

Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level) of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic) tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1), suggesting dual recognition of LIC-pIC by both sensor adaptor pathways.

Conclusions

These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.  相似文献   

19.
Neonates are highly susceptible to infectious diseases and defective antiviral pDC immune responses have been proposed to contribute to this phenomenon. Isolated cord blood pDCs innately responded to a variety of TLR7 and TLR9 dependent viruses, including influenza A virus (IAV), human immunodeficiency virus (HIV) or herpes-simplex virus (HSV) by efficiently producing IFN-α, TNF-α as well as chemokines. Interestingly, following activation by CpGA, but not viruses, cord pDCs tend to survive less efficiently. We found that a hallmark of pDCs in neonates is an extended CD2+pDCs compartment compared to adult pDCs without affecting the antiviral IFN-α response. Within CD2+pDCs, we identified a subpopulation expressing CD5 and responsible for IL-12p40 production, however this population is significantly decreased in cord blood compared to adult blood. Therefore, neonatal pDCs clearly display variation in phenotype and subset composition, but without major consequences for their antiviral responses.  相似文献   

20.
The early systemic production of interferon (IFN)-αβ is an essential component of the antiviral host defense mechanisms, but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we investigated the IFN-αβ response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid (m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-αβ mRNA expression in different organs and cells types, we show that in vivo, Ads elicit strong and rapid IFN-αβ production, almost exclusively in splenic mDCs. Using knockout mice, various strains of Ads (wild type, mutant and UV-inactivated) and MAP kinase inhibitors, we demonstrate that the Ad-induced IFN-αβ response does not require Toll-like receptors (TLR), known cytosolic sensors of RNA (RIG-I/MDA-5) and DNA (DAI) recognition and interferon regulatory factor (IRF)-3, but is dependent on viral endosomal escape, signaling via the MAP kinase SAPK/JNK and IRF-7. Furthermore, we show that Ads induce IFN-αβ and IL-6 in vivo by distinct pathways and confirm that IFN-αβ positively regulates the IL-6 response. Finally, by measuring TNF-α responses to LPS in Ad-infected wild type and IFN-αβR−/− mice, we show that IFN-αβ is the key mediator of Ad-induced hypersensitivity to LPS. These findings indicate that, like endosomal TLR signaling in pDCs, TLR-independent virus recognition in splenic mDCs can also produce a robust early IFN-αβ response, which is responsible for the bulk of IFN-αβ production induced by adenovirus in vivo. The signaling requirements are different from known TLR-dependent or cytosolic IFN-αβ induction mechanisms and suggest a novel cytosolic viral induction pathway. The hypersensitivity to components of the microbial flora and invading pathogens may in part explain the toxic side effects of adenoviral gene therapy and contribute to the pathogenesis of adenoviral disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号