首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 45 kDa protein was isolated from a soluble vaccine prepared from formaldehyde-killed spherules of Coccidioides immitis. From the N-terminal amino acid sequence, the protein yielded a 17-amino-acid peptide that was homologous to sequences of other fungal aspartyl proteinases. The coccidioidal cDNA encoding the proteinase was amplified using oligonucleotide primers designed from the 45 kDa N-terminal amino acid sequence and a fungal aspartyl proteinase consensus amino acid sequence. The PCR product was cloned and sequenced, and the remaining 5' upstream and 3' downstream cDNA was amplified, cloned, and sequenced. The cDNA encoding the coccidioidal aspartyl proteinase open reading frame was cloned and the fusion protein containing a C-terminal His-tag expressed in E. coli. The recombinant aspartyl proteinase was purified by immobilized metal affinity chromatography. This recombinant protein will be used for further studies to evaluate its antigenicity, including protective immunogenicity.  相似文献   

2.
Three distinct secreted aspartyl proteinases in Candida albicans.   总被引:16,自引:3,他引:13       下载免费PDF全文
The secreted aspartyl proteinases of Candida albicans (products of the SAP genes) are thought to contribute to virulence through their effects on Candida adherence, invasion, and pathogenicity. From a single strain of C. albicans (WO-1) which expresses a phenotypic switching system, three secreted aspartyl proteinases have been identified as determined by molecular weight and N-terminal sequence. Each of the three identified proteins represents the mature form of one of three distinct proteinase isoenzymes, two of which correspond to the recently cloned SAP1 and SAP2 genes (previously referred to as CAP, PEP, or PRA). A genomic library was screened under low-stringency hybridization conditions with a polymerase chain reaction fragment from SAP1. In addition to clones of SAP1 and SAP2, a clone containing SAP3, a novel third secreted proteinase gene, was identified and sequenced. The three aspartyl proteinase isoenzymes differ in primary sequence and pI, suggesting that they may play different roles in virulence and pathogenesis. All three of these proteinases are expressed in the same strain. However, the pattern of proteinase expression is correlated with the switch phenotype of the cell. Opaque cells of strain WO-1 express Sap1 and Sap3, while white cells of the same strain express Sap2. The differential expression of three Sap proteinases may contribute to virulence in C. albicans.  相似文献   

3.
Cleavage of human big endothelin-1 by Candida albicans aspartic proteinase   总被引:2,自引:0,他引:2  
Abstract A Candida albicans aspartic proteinase (CAP), one of the secretory proteinases of Candida albicans , is thought to be a possible virulence factor in Candida albicans infection. Whereas endothelin-1 is found as an endothelium-derived strong vasoconstrictive peptide, it is known to have a role in the maintenance of vascular homeostasis and tissue survival. Endothelin-1 is generated from a precursor form of endothelin-1, the so-called big endothelin-1. It has recently been reported that cathepsin D, E and pepsin, which are aspartic proteinases, convert big endothelin-1 to endothelin-1. In this study, the relationship between CAP and big endothelin-1 was studied. High performance liquid chromatography analysis revealed that big endothelin-1 was cleaved into several amino acid sites by CAP, but endothelin-1 was not converted from big endothelin-1. CAP cleaved big endothelin-1 at different sites when compared with that of other known aspartic proteinases, and it suppressed endothelin-1 production through the degradation of big endothelin-1. CAP may break homeostatic mechanism of endothelin-1 in Candida albicans infectious lesion.  相似文献   

4.
Twenty strains of Staphylococcus aureus from ATCC type cultures and strains found in clinical studies were cultivated, and their endopeptidase activity specific for glutamic acid was surveyed using benzyloxycarbonyl-Phe-Leu-Glu-p-nitroanilide (Z-Phe-Leu-Glu-pNA) as a substrate. The activity was found in two of the strains, ATCC 12600 and ATCC 25923. A glutamic acid-specific proteinase, which we propose to call SPase, was purified from the culture filtrate of S. aureus strain ATCC 12600 by a series of column chromatographies on DEAE-Sepharose twice and on Sephacryl S-200. A single band was observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the purified SPase. The molecular weight of the proteinase was estimated to be 34000 by SDS-PAGE. When synthetic peptides and oxidized insulin B-chain were used as substrates, SPase showed the same substrate specificity as V8 proteinase, EC 3.4.21.9, which specifically cleaves peptide bonds on the C-terminal side of glutamic acid and aspartic acid. Examination with p-nitroanilides of glutamic acid and aspartic acid as substrates, however, revealed that both proteinases are highly specific for a glutamyl bond in comparison with an aspartyl bond. To elucidate the complete primary structure of SPase, its gene was cloned from genomic DNA of S. aureus ATCC 12600, and the nucleotide sequence was determined. Taking the amino acid sequence of SPase from the NH2-terminus to the 27th residue into consideration, the clones encode a mature peptide of 289 amino acids, which follows a prepropeptide of 68 residues. SPase was confirmed to be a novel endopeptidase specific for glutamic acid, being different from V8 proteinase which consists of 268 amino acids.  相似文献   

5.
The substrate specificity of an intracellular proteinase from Streptococcus lactis was investigated in an effort to understand the role of the enzyme in the cell. Peptides in which the N-terminal residue was glycine were not hydrolyzed by the enzyme (exceptions were glycyl-alanine, glycyl-aspartic acid, and glycyl-asparagine), but the peptide was hydrolyzed if the N-terminal residue was alanine. The enzyme also showed activity toward peptides containing aspartic acid or asparagine. Hydrolysis of only the peptide bonds of alanyl, aspartyl, or asparaginyl residues was confirmed by the action of the enzyme on oxidized bovine ribonuclease A- and B- chain insulin. The N-terminal residues of the peptide fragments liberated were identified. The enzyme attacked both substrates only at alanyl, aspartyl, and asparaginyl residues, releasing these as free amino acids. In addition to alanine, aspartic acid, and asparagine, certain other amino acids were liberated from ribonuclease A, but these were accounted for by the relation of their position to alanine, aspartic acid, and asparagine residues.  相似文献   

6.
7.
Kumar R  Shukla PK 《Fungal biology》2010,114(2-3):189-197
Resistance to amphotericin B is an emerging phenomenon in Candida albicans. Amphotericin B-resistant strain of C. albicans was developed under laboratory conditions and the stability of acquired resistance was confirmed in vitro as well as in vivo. This AMB-resistant strain exhibited reduced germ tube formation as compared to parent strain of C. albicans (ATCC10231). Enzymatic activity of virulence factors like secreted aspartyl proteinase and phospholipase were found to be significantly high in AMB-R as compared to parent strain whereas ergosterol content of AMB-R was drastically reduced. The behavior of AMB-R strain is an interesting phenomenon and opens up a wide area of research regarding pathways and mechanisms.  相似文献   

8.
In order to characterize the zymogen of the milk-clotting enzyme from Rhizomucor miehei, we constructed a cDNA library on pBR327 in Escherichia coli. Aspartic proteinase-specific recombinants were isolated by colony hybridization to a specific oligonucleotide mixture, and the cDNA sequence corresponding to a precursor form of the enzyme was determined. The deduced amino acid sequence shows that this secreted fungal proteinase is synthesized as a precursor. The first 22 amino acid residues in this precursor constitute a typical signal peptide. The amino acid sequence of the following 47-amino-acid-long prosegment shows homology to the prosegments from both the extracellular and intracellular vertebrate aspartic proteinases, and to the prosegments from the yeast and Mucor pusillus aspartic proteinases as well. These observations suggest that all aspartic proteinases are synthesized with a prosegment and that this prosegment is essential for the correct folding of all the mature enzymes. The active Rhizomucor miehei enzyme consists of 361 amino acid residues with a total molecular weight of 38,701. Clusters of identities around the active site cleft support the assumption that these proteinases have a common folding of their peptide chains. The disulphide bridges were localized in the fungal enzyme, and 2 N-glycosylation sites were identified.  相似文献   

9.
Embryonic chicken pepsinogen is an aspartyl proteinase that is specifically secreted during the embryonic period in the chicken proventriculus (glandular stomach). To learn the phylogeny of this pepsinogen, we isolated a cDNA clone by screening a lambda gt11 library of embryonic proventricular cDNAs with an antiserum to the embryonic chicken pepsinogen. We obtained a 200-base pair cDNA clone which encoded 18 amino acids that had high sequence homology with the carboxyl termini of other pepsinogens. Northern blot analysis revealed that this cDNA clone hybridized to a mRNA of 1,600 bases in the embryonic proventriculus but not to the mRNA in the adult proventriculus. The almost complete nucleotide sequence of embryonic chicken pepsinogen-cDNA was determined by sequencing longer cDNAs obtained by screening the same library with the 200-base pair cDNA and primer extension with a synthetic primer. The cDNA consisted of 1,281 nucleotides and encoded 383 amino acids for prepepsinogen. The predicted amino acid sequence was compared with the sequences of other aspartyl proteinases: pepsinogen A of human, monkey, pig, and chicken, progastricsin of monkey and rat, and bovine prochymosin. The phylogenetic tree constructed for them indicates the possibility that embryonic chicken pepsinogen diverged from prochymosin, after prochymosin and pepsinogen A had diverged from each other.  相似文献   

10.
11.
The age-related formation of succinimides in proteins, through spontaneous deamidation of asparagine, and through cyclization of aspartic acid, is thought to be followed by the hydrolysis of the succinimide ring, yielding a mixture of normal aspartic acid sites and-isomerized aspartic acid sites (isoaspartic acid). The chemical reduction of an isoaspartyl site to the corresponding amino acid alcohol, isohomoserine, has now been investigated as a general approach to measuring the accumulation of isomerized residues in aging proteins. The methods employed were based on conditions previously found to be successful in reducing protein aspartic acid to homoserine. Borane was employed as the reducing agent, and was found to produce the expected amino acid alcohols in reactions with model peptides. In addition, amino acid analysis revealed a complex pattern of unknown products of these reduction reactions, some of which were also evident when a much stronger reducing agent, lithium aluminum hydride, was used. The correlation of some of these side-products with the isomerization of the peptide suggests, unexpectedly, that the reactivity of reducing agents toward aspartyl residues and perhaps other sites in the peptide may be influenced by steric factors related to aspartyl isomerization. The borane reduction method was also applied to proteins. No detectable isohomoserine was formed either in ovalbumin, a model aged protein, or in human lens proteins of advanced age, with conditions that fully reduced normal aspartyl residues to homoserine. These tests thus indicate that the percentage of aspartic acid in the isomerized form in these proteins is below the limit of detectability (below 5%). These results complement previous experimental results that have indicated a low bulk isoaspartyl content in most natural proteins.  相似文献   

12.
We report the creation of a new low-estrogen murine model of concurrent oral and vaginal C. albicans colonization that resembles human candidal carriage at both mucosal sites. Weekly estrogen administration of 5 microg intramuscular and subcutaneously was optimal for enhancement of oral colonization and was essential for vaginal colonization. In BALB/c mice, a number of C. albicans clinical isolates (n=3) colonized both oral and/or vaginal sites, but only strain 529L colonized 100% of mice persistently for over 5 weeks. Laboratory strains SC5314 and NCPF 3153 did not colonize the model; however, NCPF 3156 showed vaginal colonization up to week 5. Prior passaging through mice enhanced subsequent colonization of SC5314. Intranasal immunization with a C. albicans virulence antigen (secreted aspartyl proteinase 2) significantly reduced or abolished the fungal burden orally and vaginally by week 2 and 7. Our concurrent model of mucosal colonization reduces the numbers of experimental mice by half, can be used to assess potential vaccine candidates, and permits the detailed analysis of host-fungal interactions during the natural state of Candida colonization.  相似文献   

13.
14.
Eukaryotic cells respond to DNA damage by activating damage checkpoint pathways, which arrest cell cycle progression and induce gene expression. We isolated a full-length cDNA encoding a 49-kDa protein from Leishmania major, which exhibited significant deduced amino acid sequence homology with the annotated Leishmania sp. DNA damage-inducible (Ddi1-like) protein, as well as with the Ddi1 protein from Saccharomyces cerevisiae. In contrast to the previously described Ddi1 protein, the protein from L. major displays three domains: (1) an NH2-terminal ubiquitin like; (2) a COOH terminal ubiquitin-associated; (3) a retroviral aspartyl proteinase, containing the typical D[S/T]G signature. The function of the L. major Ddi1-like recombinant protein was investigated after expression in baculovirus/insect cells and biochemical analysis, revealing preferential substrate selectivity for aspartyl proteinase A2 family substrates, with optimal activity in acidic conditions. The proteolytic activity was inhibited by aspartyl proteinase inhibitors. Molecular modeling of the retroviral domain of the Ddi1-like Leishmania protein revealed a dimer structure that contained a double Asp-Ser-Gly-Ala amino acid sequence motif, in an almost identical geometry to the exhibited by the homologous retroviral aspartyl protease domain of yeast Ddi1 protein. Our results indicate that the isolated Ddi1-like protein is a functional aspartyl proteinase in L. major, opening possibility to be considered as a potential target for novel antiparasitic drugs.  相似文献   

15.
In this study, the cDNA encoding the aspartic proteinase of Mucor mucedo DSM 809 has been identified by RNA ligased-mediated and oligo-capping rapid amplification of cDNA ends (RACE) technique. The gene contained an open reading frame of 1,200 bp and encoded for a signal peptide of 21 amino acid residues. Two N-glycosylation sites were observed within the identified sequence. The proteinase gene was cloned into the vector pGAPZαA and expressed in Pichia pastoris X-33 for the first time. The protein has been secreted in functionally active form into the culture medium. The expression system does not require any acid activation process. The factors affecting the expression level were optimized in shaking flask cultures. Maximum enzyme production was observed with an initial medium pH of 3.5 at 20 °C and 220 rpm shaking speed utilizing 4 % glucose as a carbon and energy source. The enzyme was purified with cation exchange chromatography and further studies revealed that the enzyme was secreted in glycosylated form. The purified enzyme exhibited remarkable sensitivity to thermal treatment and became completely inactivated after incubation at 55 °C for 10 min. These results indicated that the recombinant proteinase could be considered as a potential rennet candidate for the cheese-making industry.  相似文献   

16.
We have cloned a cDNA encoding a cysteine proteinase of the Acanthamoeba healyi OC-3A strain isolated from the brain of a granulomatous amoebic encephalitis patient. A DNA probe for an A. healyi cDNA library screening was amplified by PCR using degenerate oligonucleotide primers designed on the basis of conserved amino acids franking the active sites of cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteinases. Cysteine proteinase gene of A. healyi (AhCP1) was composed of 330 amino acids with signal sequence, a proposed pro-domain and a predicted active site made up of the catalytic residues. Cys25, His159, and Asn175. Deduced amino acid sequence analysis indicates that AhCP1 belong to ERFNIN subfamily of C1 peptidases. By Northern blot analysis, no direct correlation was observed between AhCP1 mRNA expression and virulence of Acanthamoeba, but the gene was expressed at higher level in amoebae isolated from soil than amoeba from clinical samples. These findings raise the possibility that Ahcp1 protein may play a role in protein metabolism and digestion of phagocytosed bacteria or host tissue debris rather than in invasion of amoebae into host tissue.  相似文献   

17.
The entire pepsinogen C (PGC) coding sequence was determined by analysis of a series of five overlapping cDNA clones identified in a library constructed from human gastric mucosa poly(A+) RNA. A partial cDNA clone was initially identified using a 256-fold degenerate oligonucleotide probe for amino acid residues 4-12 of pepsin C, and subsequently 4 additional clones were identified upon rescreening with a probe complementary to the 5' region of the original cDNA clone. Northern analysis of gastric mucosa poly(A+) RNA with a PGC cDNA probe revealed an mRNA 1.5-kilobase species that was indistinguishable from that detected with a human pepsinogen A (PGA) cDNA probe. In contrast, the PGC and PGA cDNA probes detected distinct genomic restriction fragments indicating there was no detectable cross-hybridization under high stringency conditions. The PGC gene was localized to human chromosome 6 by analysis of a panel of human x mouse somatic cell hybrids. The regions containing the active site aspartyl groups of PGC are conserved in relationship to several other aspartic proteinases. We propose that the absence of detectable immunologic cross-reactivity between the two groups of human pepsinogens, A and C, results from divergent evolution of sequences located on the surface of the zymogens in contrast to the strongly conserved active site regions located within the binding cleft of the enzymes that are inaccessible for antigenic recognition.  相似文献   

18.
A gene encoding Rhizopus niveus aspartic proteinase was isolated from an R. niveus genomic library by using oligonucleotides probes corresponding to its partial amino acid sequence, and its nucleotide sequence was determined. By comparing its deduced amino acid sequence with the amino acid sequence of rhizopuspepsin (5, 26), we concluded that the R. niveus aspartic proteinase gene has an intron within its coding region and that it has a preproenzyme sequence of 66 amino acids upstream of the mature enzyme of 323 amino acids.  相似文献   

19.
Candida albicans and some other pathogenic Candida species, when grown in a medium containing a protein as a sole source of nitrogen, secrete an acid proteinase. Culture supernatants were assayed for proteinase activity, and were also analysed by Western blotting with antibodies raised and affinity-purified against proteinase of C. albicans. Proteinases secreted by C. tropicalis and C. parapsilosis were antigenically related to that of C. albicans, but had different molecular masses. The proteinases secreted by C. lipolytica, C. rugosa and C. lusitaniae were not antigenically related. The kinetics of proteinase secretion by C. albicans were monitored by activity and by Western blotting. With BSA as the nitrogen source, proteinase secretion increased exponentially until about 16 h. Culture supernatants of BSA-grown cultures accumulated proteinase to about a 1000-fold higher level than those of ammonium-sulphate-grown cultures. In vivo labelling experiments showed that proteinase was not detectably accumulated in the cells, but was secreted immediately after synthesis. Immunoprecipitation of in vitro translated poly(A)-containing RNA identified a putative pre-protein of about 54 kDa. As well as BSA, other proteins (haemoglobin, ovalbumin, histone), peptone and tryptone, when used as nitrogen sources, could induce proteinase, but to different levels. When Casamino acids or an amino acid mixture (equivalent to the composition of BSA) was used as nitrogen source, no induction was observed. Ammonium sulphate, or any other ammonium salt, repressed secretion of proteinase.  相似文献   

20.
The gene (PRA11) encoding a secreted aspartate proteinase of Candida albicans has been cloned and sequenced. The nucleotide and deduced amino acid sequences of PRA11 are 77 and 73% identical, respectively, with the reported sequences of PRA10 also cloned from C. albicans. Southern analyses indicated that the genome of each strain examined (ATCC 10231 and ATCC 10261) contains PRA10 and PRA11. Northern (RNA) analyses showed that PRA11 was expressed at a much higher level than was PRA10 when secretion of the proteinase by strain ATCC 10261 was induced with albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号