首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In GnRH-secreting (GT1) neurons, activation of Ca(2+)-mobilizing receptors induces a sustained membrane depolarization that shifts the profile of the action potential (AP) waveform from sharp, high-amplitude to broad, low-amplitude spikes. Here we characterize this shift in the firing pattern and its impact on Ca(2+) influx experimentally by using prerecorded sharp and broad APs as the voltage-clamp command pulse. As a quantitative test of the experimental data, a mathematical model based on the membrane and ionic current properties of GT1 neurons was also used. Both experimental and modeling results indicated that inactivation of the tetrodotoxin-sensitive Na(+) channels by sustained depolarization accounted for a reduction in the amplitude of the spike upstroke. The ensuing decrease in tetraethylammonium-sensitive K(+) current activation slowed membrane repolarization, leading to AP broadening. This change in firing pattern increased the total L-type Ca(2+) current and facilitated AP-driven Ca(2+) entry. The leftward shift in the current-voltage relation of the L-type Ca(2+) channels expressed in GT1 cells allowed the depolarization-induced AP broadening to facilitate Ca(2+) entry despite a decrease in spike amplitude. Thus the gating properties of the L-type Ca(2+) channels expressed in GT1 neurons are suitable for promoting AP-driven Ca(2+) influx in receptor- and non-receptor-depolarized cells.  相似文献   

2.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

3.
Interaction of antibodies to ganglioside GM1 with Neuro2a cells was studied to investigate the role of GM1 in cell signaling. Binding of anti-GM1 to Neuro2a cells induced the formation of 3H-inositol phosphates (3H-IPs) and elevated the intracellular Ca2+ concentration [Ca2+]i. The rise in [Ca2+]i was due to the influx of Ca2+ from the extracellular medium and release from intracellular Ca2+ pools. The Ca2+ influx pathway did not allow the permeation of Na+ or K+. The influx was inhibited by amiloride, a specific blocker of T-type Ca2+ channels, whereas nifedipine and diltiazem, blockers of L-type Ca2+ channels, did not have any effect. Thus, anti-GM1 appears to activate a T-type Ca2+ channel in Neuro2a cells. The intracellular Ca2+ release was inhibited by pretreatment of cells with neomycin sulfate, phorbol dibutyrate, and pertussis toxin (PTx), which also inhibited the 3H-IP formation in Neuro2a cells. Addition of caffeine neither elevated the [Ca2+]i nor affected the anti-GM1-induced [Ca2+]i rise. The data reveal that the binding of anti-GM1 to Neuro2a cells activates phospholipase C via a PTx-sensitive G protein, which leads to formation of IPs and release of Ca2+ from inositol trisphosphate-sensitive pool of endoplasmic reticulum. Anti-GM1 also arrested the differentiation of Neuro2a cells in culture and significantly stimulated their proliferation. This stimulatory effect of anti-GM1 on cell proliferation was blocked by amiloride but not by PTx, suggesting that the influx of Ca2+ was essentially required for cell proliferation. Our data suggest a role for GM1 in the regulation of transmembrane signaling events and cell growth.  相似文献   

4.
Stimulation of enriched pituitary gonadotrophs by gonadotropin-releasing hormone (GnRH) elicits dose-dependent biphasic elevations of cytosolic calcium ([Ca2+]i) and luteinizing hormone (LH) release, with rapid initial peaks followed by sustained plateaus during continued exposure to the agonist. A potent GnRH-antagonist, [N-acetyl-D-p-Cl-Phe1,2,D-Trp3,D-Lys6,D-Ala10]GnRH, prevented the biphasic [Ca2+]i and LH responses when added before GnRH, and rapidly abolished both responses to GnRH when added during the plateau phase. In low Ca2+ medium the LH peak responses to GnRH were reduced and the subsequent sustained responses were almost completely abolished; reduction of extracellular Ca2+ during exposure to GnRH caused a prompt decline of LH release. The initial [Ca2+]i peak is derived largely from intracellular calcium mobilization with a partial contribution from calcium influx, while the sustained phase is dependent on the entry of extracellular Ca2+ through both L-type and dihydropyridine-insensitive channels. The presence of L-type voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs was indicated by the ability of elevated extracellular [K+] to stimulate calcium influx and LH release, and the sensitivity of these responses to dihydropyridine agonist and antagonist analogs. In cells pretreated with high [K+], the peak [Ca2+]i response to GnRH was enhanced but the subsequent plateau phase was markedly attenuated. This divergent effect of sustained membrane depolarization on the biphasic [Ca2+]i response suggests that calcium entry through VSCC initially potentiates agonist-induced mobilization of Ca2+ from intracellular storage sites. However, established Ca2+ entry through depolarization-activated VSCC cannot be further increased by agonist stimulation because both processes operate through the same channels, probably by changes in their activation-inactivation kinetics. Finally, the reciprocal potentiation by the dihydropyridine agonist, BK 8644, and GnRH of [Ca2+]i and LH responses confirms that both compounds act on the same type of channels, i.e., L-type VSCC, that participate in agonist-mediated calcium influx and gonadotropin secretion.  相似文献   

5.
Metabotropic Ca2+ channel-induced calcium release in vascular smooth muscle   总被引:2,自引:0,他引:2  
Contraction of vascular smooth muscle cells (VSMCs) depends on the rise of cytosolic [Ca(2+)] owing to either Ca(2+) influx through voltage-gated Ca(2+) channels of the plasmalemma or to receptor-mediated Ca(2+) release from the sarcoplasmic reticulum (SR). Although the ionotropic role of L-type Ca(2+) channels is well known, we review here data suggesting a new role of these channels in arterial myocytes. After sensing membrane depolarization Ca(2+) channels activate G proteins and the phospholipase C/inositol 1,4,5-trisphosphate (InsP(3)) pathway. Ca(2+) released through InsP(3)-dependent channels of the SR activates ryanodine receptors to amplify the cytosolic Ca(2+) signal, thus triggering arterial cerebral vasoconstriction in the absence of extracellular calcium influx. This metabotropic action of L-type Ca(2+) channels, denoted as calcium channel-induced Ca(2+) release, could have implications in cerebral vascular pharmacology and pathophysiology, because it can be suppressed by Ca(2+) channel antagonists and potentiated with small concentrations of extracellular vasoactive agents as ATP.  相似文献   

6.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

7.
The mechanism by which extracellular ATP stimulates insulin secretion was investigated in RINm5F cells. ATP depolarized the cells as demonstrated both by using the patch-clamp technique and a fluorescent probe. The depolarization is due to closure of ATP-sensitive K+ channels as shown directly in outside-out membrane patches. ATP also raised cytosolic Ca2+ [( Ca2+]i). At the single cell level the latency of the [Ca2+]i response was inversely related to ATP concentration. The [Ca2+]i rise is due both to inositol trisphosphate mediated Ca2+ mobilization and to Ca2+ influx. The former component, as well as inositol trisphosphate generation, were inhibited by phorbol myristate acetate which uncouples agonist receptors from phospholipase C. This manoeuvre did not block Ca2+ influx or membrane depolarization. Diazoxide, which opens ATP-sensitive K+ channels, attenuated membrane depolarization and part of the Ca2+ influx stimulated by ATP. However, the main Ca2+ influx component was unaffected by L-type channel blockers, suggesting the activation of other Ca2+ conductance pathways. ATP increased the rate of insulin secretion by more than 12-fold but the effect was transient. Prolonged exposure to EGTA dissociated the [Ca2+]i rise from ATP-induced insulin secretion, since the former was abolished and the latter only decreased by about 60%. In contrast, vasopressin-evoked insulin secretion was more sensitive to Ca2+ removal than the accompanying [Ca2+]i rise. Inhibition of phospholipase C stimulation by phorbol myristate acetate abrogated vasopressin but only reduced ATP-induced insulin secretion by 34%. These results suggest that ATP stimulates insulin release by both phospholipase C dependent and distinct mechanisms. The Ca2+)-independent component of insulin secretion points to a direct triggering of exocytosis by ATP.  相似文献   

8.
9.
The extracellular osmotic environment of chondrocytes fluctuates during joint loading as fluid is expressed from and reimbibed by the extracellular matrix. Matrix synthesis by chondrocytes is modulated by joint loading, possibly mediated by variations in intracellular composition. The present study has employed the Ca2+-sensitive fluoroprobe Fura-2 to determine the effects of hypotonic shock (HTS) on intracellular Ca2+ concentration ([Ca2+]i) and to characterise the mechanisms involved in the response for isolated bovine articular chondrocytes. In cells subjected to a 50% dilution, [Ca2+]i rapidly increased by approximately 250%, a sustained plateau being achieved within 300 s. The effect was inhibited by thapsigargin or by removal of extracellular Ca2+, indicating that the rise in [Ca2+]i reflects both influx from the extracellular medium and release from intracellular stores. Inhibition of the response by neomycin implicates activation of PLC and IP3 synthesis in the mobilisation of Ca2+ from intracellular stores. The rise was insensitive to inhibitors of L-type voltage-activated Ca2+ channels (LVACC) or reverse mode Na+/Ca2+ exchange (NCE) but could be significantly attenuated by ruthenium red, an inhibitor of transient receptor potential vanilloid (TRPV) channels and by Gd3+, a blocker of stretch-activated cation (SAC) channels. The HTS-induced rise in [Ca2+]i was almost completely absent in cells treated with Ni2+, a non-specific inhibitor of Ca2+ entry pathways. We conclude that in response to HTS the opening of SACC and a member of TRPV channel family leads to Ca2+ influx, simultaneously with the release from intracellular stores.  相似文献   

10.
Interstitial cells of Cajal (ICC) generate the electrical slow wave. The ionic conductances that contribute to the slow wave appear to vary among species. In humans, a tetrodotoxin-resistant Na+ current (Na(V)1.5) encoded by SCN5A contributes to the rising phase of the slow wave, whereas T-type Ca2+ currents have been reported from cultured mouse intestine ICC and also from canine colonic ICC. Mibefradil has a higher affinity for T-type over L-type Ca2+ channels, and the drug has been used in the gastrointestinal tract to identify T-type currents. However, the selectivity of mibefradil for T-type Ca2+ channels over ICC and smooth muscle Na+ channels has not been clearly demonstrated. The aim of this study was to determine the effect of mibefradil on T-type and L-type Ca2+ and Na+ currents. Whole cell currents were recorded from HEK-293 cells coexpressing green fluorescent protein with either the rat brain T-type Ca2+ channel alpha(1)3.3b + beta(2), the human intestinal L-type Ca2+ channel subunits alpha(1C) + beta(2), or Na(V)1.5. Mibefradil significantly reduced expressed T-type Ca2+ current at concentrations > or = 0.1 microM (IC(50) = 0.29 microM), L-type Ca2+ current at > 1 microM (IC(50) = 2.7 microM), and Na+ current at > or = 0.3 microM (IC(50) = 0.98 microM). In conclusion, mibefradil inhibits the human intestinal tetrodotoxin-resistant Na+ channel at submicromolar concentrations. Caution must be used in the interpretation of the effects of mibefradil when several ion channel classes are coexpressed.  相似文献   

11.
Intracellular calcium concentration ([Ca2+]i) in articular chondrocytes changes during mechanical challenges associated with joint movements, because of the fluctuation of the extracellular osmotic environment during joint loading. Matrix synthesis by chondrocytes is modulated by loading patterns, possibly mediated by variations in intracellular composition, including [Ca2+]i. The present study has employed the Ca(2+)-sensitive fluoroprobe Fura-2 to determine the effects of hypertonic shock on intracellular Ca2+ concentration ([Ca2+]i) and to characterise the mechanisms involved in the response for isolated bovine articular chondrocytes. In cells subjected to a hypertonic shock, [Ca2+]i rapidly increased by approximately 300%, reaching a maximal value within 50 s following the hypertonic shock with a recovery of more than 90% towards the initial [Ca2+]i within 5 min. The effect was inhibited by removal of extracellular Ca2+ ions, but not by thapsigargin, indicating that the rise in [Ca2+]i is only a result of influx from the extracellular medium. The rise was insensitive to inhibitors of L-type voltage-activated Ca2+ channels, TRPV channels or stretch-activated cation channels. Non-specific inhibitors of Ca2+ channels like CdCl2, NiCl2, LaCl3 and ZnCl2 significantly attenuated the response, although the extent in which CdCl2 and NiCl2 (both of them inhibitors of annexin-mediated Ca2+ fluxes) inhibited the response was significantly greater. The rise was also sensitive to KBR7943, inhibitor of NCE reverse mode and trifluoperazine, inhibitor of the activity of annexins. Hypertonic shock also produced also hyperpolarisation of chondrocytes (Em measured by means of Di-BA-C4(3), a membrane potential sensitive dye), which was inhibited by TEA-Cl and BaCl, but was not affected by changing the extracellular solution to Ca(2+)-free HBS. Inhibition of hyperpolarisation completely abolished the [Ca2+]i rise following hypertonic shock. Treatment with retinoic acid, which can increase the activity of annexins as Ca2+ transport pathways caused a significant increase in [Ca2+]i. The recovery of [Ca2+] was inhibited by benzamil and was dependent on extracellular Na+, but was unaffected by Na-orthovanadate, an inhibitor of plasma Ca(2+)-ATPase. We conclude that in response to hypertonic shock, NCE reverse mode and annexins are the pathways responsible for the [Ca2+]i increase, while forward mode operation of NCE is responsible for the subsequent extrusion of Ca2+ and recovery of [Ca2+]i towards initial values.  相似文献   

12.
Changes in the cytoplasmic free calcium concentration ([Ca2+]i) in pancreatic B-cells play an important role in the regulation of insulin secretion. We have recorded [Ca2+]i transients evoked by single action potentials and voltage-clamp Ca2+ currents in isolated B-cells by the combination of dual wavelength emission spectrofluorimetry and the patch-clamp technique. A 500-1000 ms depolarization of the B-cell from -70 to -10 mV evoked a transient rise in [Ca2+]i from a resting value of approximately 100 nM to a peak concentration of 550 nM. Similar [Ca2+]i changes were associated with individual action potentials. The depolarization-induced [Ca2+]i transients were abolished by application of nifedipine, a blocker of L-type Ca2+ channels, indicating their dependence on influx of extracellular Ca2+. Following the voltage-clamp step, [Ca2+]i decayed with a time constant of approximately 2.5 s and summation of [Ca2+]i occurred whenever depolarizations were applied with an interval of less than 2 s. The importance of the Na(+)-Ca2+ exchange for B-cell [Ca2+]i maintenance was evidenced by the demonstration that basal [Ca2+]i rose to 200 nM and the magnitude of the depolarization-evoked [Ca2+]i transients was markedly increased after omission of extracellular Na+. However, the rate by which [Ca2+]i returned to basal was not affected, suggesting the existence of additional [Ca2+]i buffering processes.  相似文献   

13.
An early cellular response of osteoblasts to swelling is plasma membrane depolarization, accompanied by a transient increase in intracellular calcium ([Ca2+]i), which initiates regulatory volume decrease (RVD). The authors have previously demonstrated a hypotonically induced depolarization of the osteoblast plasma membrane, sufficient to open L-type Ca channels and mediate Ca2+ influx. Herein is described the initiation of RVD in UMR-106.01 cells, mediated by hypotonically induced [Ca2+]i transients resulting from the activation of specific isoforms of L-type Ca channels. The authors further demonstrate that substrate interaction determines which specific alpha1 Ca channel subunit isoform predominates and mediates Ca2+ entry and RVD. Swelling-induced [Ca2+]i transients, and RVD in cells grown on a type I collagen matrix, are inhibited by removal of Ca from extracellular solutions, dihydropyridines, and antisense oligodeoxynucleotides directed exclusively to the alpha1C isoform of the L-type Ca channel. Ca2+ transients and RVD in cells grown on untreated glass cover slips were inhibited by similar maneuvers, but only by antisense oligodeoxynucleotides directed to the alpha1S isoform of the L-type Ca channel. This represents the first molecular identification of the Ca channels that transduce the initiation signal for RVD by osteoblastic cells.  相似文献   

14.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

15.
Single pituitary cells often fire spontaneous action potentials (APs), which are believed to underlie spiking fluctuations in cytosolic calcium concentration ([Ca2+]i). To address how these basal [Ca2+]i fluctuations depend on changes in plasma membrane voltage (V), simultaneous measurements of V and [Ca2+]i were performed in rat pituitary gonadotrophs. The data show that each [Ca2+]i spike is produced by the Ca2+ entry during a single AP. Using these and previously obtained patch-clamp data, we develop a quantitative mathematical model of this plasma membrane oscillator and the accompanying spatiotemporal [Ca2+]i oscillations. The model demonstrates that AP-induced [Ca2+]i spiking is prominent only in a thin shell layer neighboring the cell surface. This localized [Ca2+]i spike transiently activates the Ca2(+)- dependent K+ current resulting in a sharp afterhyperpolarization following each voltage spike. In accord with experimental observations, the model shows that the frequency and amplitude of the voltage spikes are highly sensitive to current injection and to the blocking of the Ca(2+)-sensitive current. Computations also predict that leaving the membrane channels intact, the firing rate can be modified by changing the Ca2+ handling parameters: the Ca2+ diffusion rate, the Ca2+ buffering capacity, and the plasma membrane Ca2+ pump rate. Finally, the model suggests reasons that spontaneous APs were seen in some gonadotrophs but not in others. This model provides a basis for further exploring how plasma membrane electrical activity is involved in the control of cytosolic calcium level in unstimulated as well as agonist-stimulated gonadotrophs.  相似文献   

16.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

17.
An important path of extracellular calcium influx in vascular smooth muscle (VSM) cells is through voltage-activated Ca2+ channels of the plasma membrane. Both high (HVA)- and low (LVA)-voltage-activated Ca2+ currents are present in VSM cells, yet little is known about the relevance of the LVA T-type channels. In this report, we provide molecular evidence for T-type Ca2+ channels in rat arterial VSM and characterize endogenous LVA Ca2+ currents in the aortic smooth muscle-derived cell line A7r5. AVP is a vasoconstrictor hormone that, at physiological concentrations, stimulates Ca2+ oscillations (spiking) in monolayer cultures of A7r5 cells. The present study investigated the role of T-type Ca2+ channels in this response with a combination of pharmacological and molecular approaches. We demonstrate that AVP-stimulated Ca2+ spiking can be abolished by mibefradil at low concentrations (<1 microM) that should not inhibit L-type currents. Infection of A7r5 cells with an adenovirus containing the Cav3.2 T-type channel resulted in robust LVA Ca2+ currents but did not alter the AVP-stimulated Ca2+ spiking response. Together these data suggest that T-type Ca2+ channels are necessary for the onset of AVP-stimulated calcium oscillations; however, LVA Ca2+ entry through these channels is not limiting for repetitive Ca2+ spiking observed in A7r5 cells.  相似文献   

18.
Calbindin-D(28k), acts as a modulator of depolarization induced calcium transients in the pancreatic beta cell. However, specific mechanisms have not been defined. Here we show for the first time that the calcium binding protein calbindin-D(28k) acts by affecting calcium influx through voltage-dependent calcium channels in RIN pancreatic beta cells. Whole-cell patch-clamp recordings revealed that Ca(2+) current amplitudes of calbindin-D(28k) expressing RINr1046-38 beta cells were smaller than the Ca(2+) current amplitudes in control cells in response to depolarizing pulses. The peak current was observed at +20mV and the average amplitude was approximately 50pA in the calbindin expressing cells compared to approximately 250pA in control cells. In calbindin-D(28k) expressing cells, the channels had enhanced sensitivity to Ca(2+) dependent inactivation and currents decayed much more rapidly than in control cells. The Ca(2+) channels affected by calbindin were found to have biophysical properties consistent with dihydropyridine-sensitive L-type calcium channels. In response to depolarizing concentrations of K(+), calbindin expression caused a five-fold decrease in the rate of rise of [Ca(2+)](i) and decay was slower in the calbindin expressing cells. Application of verapamil resulted in a drop in the [Ca(2+)](i) signal to pre-stimulation levels indicating that the Ca(2+) channel responsible for the depolarization evoked Ca(2+) entry, modulated by calbindin, is the L-type. Co-immunoprecipitation and GST pull-down assays indicate that calbindin-D(28k) can interact with the alpha(1) subunit of Ca(v)1.2. We thus conclude that calbindin-D(28k) can regulate calcium influx via L-type calcium channels. Our findings suggest a role for calbindin-D(28k) in the beta cell in modulating Ca(2+) influx via L-type voltage-dependent calcium channels.  相似文献   

19.
Glucose-induced insulin secretion by pancreatic beta-cells depends on membrane depolarization and [Ca2+]i increase. We correlated voltage- and current-clamp recordings, [Ca2+]i measurements, and insulin reverse hemolytic plaque assay to analyze the activity of a thapsigargin-sensitive cationic channel that can be important for membrane depolarization in single rat pancreatic beta-cells. We demonstrate the presence of a thapsigargin-sensitive cationic current, which is mainly carried by Na+. Moreover, in basal glucose concentration (5.6 mM), thapsigargin depolarizes the plasma membrane, producing electrical activity and increasing [Ca2+]i. The latter is prevented by nifedipine, indicating that Ca2+ enters the cell through L-type Ca2+ channels, which are activated by membrane depolarization. Thapsigargin also increased insulin secretion by increasing the percentage of cells secreting insulin and amplifying hormone secretion by individual beta-cells. Nifedipine blocked the increase completely in 5.6 mM glucose and partially in 15.6 mM glucose. We conclude that thapsigargin potentiates a cationic current that depolarizes the cell membrane. This, in turn, increases Ca2+ entry through L-type Ca2+ channels promoting insulin secretion.  相似文献   

20.
Peptides containing Arg-Gly-Asp (RGD) immobilized on beads bind to integrins and trigger biphasic, transient increases in intracellular free Ca2+ ([Ca2+]i) in Madin-Darby canine kidney epithelial cells. The [Ca2+]i increase participates in feedback regulation of integrin-mediated adhesion in these cells. We examined influx pathways and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ store release as possible sources of the [Ca2+]i rise. The RGD-induced [Ca2+]i response requires external Ca2+ (threshold approximately 150 microM), and its magnitude is proportional to extracellular calcium. RGD-induced transients were attenuated by Ca2+ channel inhibitors (Ni2+ and carboxy-amidotriazole) or by plasma membrane depolarization, indicating that Ca2+ influx contributes to the response. Loading cells with heparin reduced the size of RGD-induced [Ca2+]i transients, indicating that IP3-mediated release of Ca2+ from stores may also contribute to the RGD response. Depletion of Ca2+ stores with thapsigargin activated Ni(2+)-sensitive Ca2+ influx that might also be expected to occur after IP3-mediated depletion of stored Ca2-. However, RGD elicited a Ni(2+)-sensitive Ca2+ influx even after pretreatment with thapsigargin, indicating that Ca2+ influx is controlled by a mechanism independent of IP3-mediated store depletion. We conclude that RGD-induced [Ca2+]i transients in Madin-Darby canine kidney cells result primarily from the combination of two distinct mechanisms: 1) IP3-mediated release of intracellular stores, and 2) activation of a Ca2+ influx pathway regulated independently of IP3 and Ca2+ store release. Because Ni2+ and carboxy-amidotriazole inhibited adhesion, whereas store depletion with thapsigargin had little effect, we suggest that the Ca2+ influx mechanism is most important for feedback regulation of integrin-mediated adhesion by increased [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号