首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino-terminal domain of class B G protein-coupled receptors contains six conserved cysteine residues involved in structurally and functionally critical disulfide bonds. The mapping of these bonds has been unclear, with one pattern based on biochemical and NMR structural characterizations of refolded, nonglycosylated amino-terminal fragments, and another pattern derived from functional characterizations of intact receptors having paired cysteine mutations. In the present study, we determined the disulfide bonding pattern of the prototypic class B secretin receptor by applying the same paired cysteine mutagenesis approach and confirming the predicted bonding pattern with proteolytic cleavage of intact functional receptor. As expected, systematic mutation to serine of the six conserved cysteine residues within this region of the secretin receptor singly and in pairs resulted in loss of function of most constructs. Notable exceptions were single mutations of the 4th and 6th cysteine residues and paired mutations involving the 1st and 3rd, 2nd and 5th, and 4th and 6th conserved cysteines, with secretin eliciting statistically significant cAMP responses above basal levels of activation for each of these constructs. Immunofluorescence microscopy confirmed similar levels of plasma membrane expression for each of the mutated receptors. Furthermore, cyanogen bromide cleaved a series of wild type and mutant secretin receptors, yielding patterns that agreed with our paired cysteine mutagenesis results. In conclusion, these data suggest the same pattern of disulfide bonding as that predicted previously by NMR and thus support a consistent pattern of amino-terminal disulfide bonds in class B G protein-coupled receptors.  相似文献   

2.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

3.
We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.  相似文献   

4.
We have examined the interaction between the serine/threonine kinase proto-oncogene product Raf-1 and the tyrosine kinase PDGF beta-receptor. Raf-1 tyrosine phosphorylation and kinase activity were increased by PDGF treatment of 3T3 cells or CHO cells expressing wild-type PDGF receptors but not mutant receptors defective in transmitting mitogenic signals, suggesting that the increase in Raf-1 kinase activity is a significant event in PDGF-induced mitogenesis. Concurrent with these increases, Raf-1 associated with the ligand-activated PDGF receptor. Furthermore, both mammalian Raf-1 and Raf-1 expressed using a recombinant baculoviral vector, associated in vitro with baculoviral-expressed PDGF receptor. This association was markedly decreased by prior phosphatase treatment of the receptor. Following incubation of partially purified baculoviral-expressed PDGF receptor with partially purified Raf-1, Raf-1 became phosphorylated on tyrosine and its serine/threonine kinase activity increased 4- to 6-fold. This is the first demonstration of the direct modulation of a protein activity by a growth factor receptor tyrosine kinase.  相似文献   

5.
The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the non-catalytic beta-subunit. Correct assembly between the alpha- and beta-subunits is essential for the functional expression of H(+),K(+)-ATPase. The beta-subunit contains nine conserved cysteine residues; two are in the cytoplasmic domain, one in the transmembrane domain, and six in the ectodomain. The six cysteine residues in the ectodomain form three disulfide bonds. In this study, we replaced each of the cysteine residues of the beta-subunit with serine individually and in several combinations. The mutant beta-subunits were co-expressed with the alpha-subunit in human embryonic kidney 293 cells, and the role of each cysteine residue or disulfide bond in the alpha/beta assembly, stability, and cell surface delivery of the alpha- and beta-subunits and H(+),K(+)-ATPase activity was studied. Mutant beta-subunits with a replacement of the cytoplasmic and transmembrane cysteines preserved H(+),K(+)-ATPase activity. All the mutant beta-subunits with replacement(s) of the extracellular cysteines did not assemble with the alpha-subunit, resulting in loss of H(+),K(+)-ATPase activity. These mutants did not permit delivery of the alpha-subunit to the cell surface. Therefore, each of these disulfide bonds of the beta-subunit is essential for assembly with the alpha-subunit and expression of H(+),K(+)-ATPase activity as well as for cell surface delivery of the alpha-subunit.  相似文献   

6.
Structural studies of the human transferrin receptor have shown that the molecule is a disulfide-bonded dimer consisting of two identical subunits (Mr = 95,000) which are post-translationally modified by the addition of a fatty acyl moiety. Oligonucleotide site-directed mutagenesis has been used to obtain mutant molecules in which each of the four cysteines, residues 62, 67, 89 and 98, clustered within or adjacent to the membrane-spanning region were modified to serine. By first preparing mutants with only one of these cysteine residues modified to serine and then obtaining additional mutants in which different combinations of two cysteine residues were modified, we have shown that both cysteine 89 and cysteine 98, which are located in the extracellular domain of the receptor, are involved in intermolecular disulfide bonds. Further, we have identified cysteine 62 as the major site of acylation. Each of the mutant molecules is synthesized and transported to the cell surface when the modified human transferrin receptor cDNAs are transiently expressed in simian Cos cells. It should therefore now be possible to design experiments to determine whether these modified receptors bind transferrin normally and mediate iron uptake.  相似文献   

7.
Platelet-derived growth factor (PDGF)-C is a novel member of the PDGF family that binds to PDGF alphaalpha and alphabeta receptors. The growth factor domain of PDGF-C (GFD-PDGF-C) was expressed in high yields in Escherichia coli and was purified and refolded from inclusion bodies obtaining a biologically active growth factor with dimeric structure. The GFD-PDGF-C contains 12 cysteine residues, and Ellman assay analysis indicates that it contains three intramonomeric disulfide bonds, which is in accordance with GFD-PDGF-C being a member of the cystine knot superfamily of growth factors. The recombinant GFD-PDGF-C was characterized by CD, fluorescence, NMR, and infrared spectroscopy. Together, our data indicate that GFD-PDGF-C is a highly thermostable protein that contains mostly beta-sheet secondary structure and some (6%) alpha-helix structure. The structural model of PDGF-C, obtained by homology-based molecular modeling using the structural representatives of this family of growth factors, shows that GFD-PDGF-C has a higher structural homology to the vascular endothelial growth factor than to PDGF-B. The modeled structure can give further insights into the function and specificity of this molecule.  相似文献   

8.
To study the importance of individual sulfhydryl residues during the folding and assembly in vivo of influenza virus hemagglutinin (HA), we have constructed and expressed a series of mutant HA proteins in which cysteines involved in three disulfide bonds have been substituted by serine residues. Investigations of the structure and intracellular transport of the mutant proteins indicate that (a) cysteine residues in the ectodomain are essential both for efficient folding of HA and for stabilization of the folded molecule; (b) cysteine residues in the globular portion of the ectodomain are likely to form native disulfide bonds rapidly and directly, without involvement of intermediate, nonnative linkages; and (c) cysteine residues in the stalk portion of the ectodomain also appear not to form intermediate disulfide bonds, even though they have the opportunity to do so, being separated from their correct partners by hundreds of amino acids including two or more other sulfhydryl residues. We propose a role for the cellular protein BiP in shielding the cysteine residues of the stalk domain during the folding process, thus preventing them from forming intermediate, nonnative disulfide bonds.  相似文献   

9.
A genetically engineered human IgG mutant with enhanced cytolytic activity.   总被引:2,自引:0,他引:2  
A mutant chimeric anti-5-dimethylaminonaphthalene-1-sulfonyl human Ig gamma that exhibited augmented effector function was constructed. Utilizing directed mutagenesis, a serine residue near the carboxyl terminus of the human IgG1 H chain (Ser444) was replaced by a cysteine. Novel intermolecular disulfide bonds between Cys444 residues linked pairs of Ig "tail-to-tail" to form covalent dimers ((H2L2)2). These dimers were 200-fold more efficient, compared with monomeric human IgG1, at antibody-dependent complement-mediated cytolysis of hapten-bearing erythrocytes. The ability to enhance the cytolytic activity of an mAb by genetic engineering may be of value in immunotherapy.  相似文献   

10.
The light chain cysteine residue that forms an interchain disulfide bond with the cysteine residue in the heavy chain in IgG1κ is the last amino acid. The cysteine residue is followed by a serine residue in IgG1λ. Effect of the serine residue on the susceptibility of disulfide bonds to reduction was investigated in the current study using a method including reduction, differential alkylation using iodoacetic acid with either natural isotopes or enriched with carbon-13, and mass spectrometry analysis. This newly developed method allowed an accurate determination of the susceptibility of disulfide bonds in IgG antibodies. The effect of the serine residue on disulfide bond susceptibility was compared using three antibodies with differences only in the light chain last amino acid, which was either a serine residue, an alanine residue or deleted. The results demonstrated that the presence of the amino acid (serine or alanine) increased the susceptibility of the inter light and heavy chain disulfide bonds to reduction. On the other hand, susceptibility of the two inter heavy chain disulfide bonds and intrachain disulfide bonds was not changed significantly.  相似文献   

11.
Exposure of cells to hydrogen peroxide or platelet-derived growth factor (PDGF) induced Akt phosphorylation and oxidation of phosphatase and tensin homolog (PTEN). The Cys124 and Cys71 residues of PTEN were critical for the formation of a disulfide bond and the intermediate glutathionylation in the process of reduction of the disulfide bond. To determine which specific tyrosine residues of the PDGF beta receptor (PDGFβR) is involved in PDGF-induced PTEN oxidation and Akt phosphorylation, we investigated a kinase activity-deficient mutant and PDGFβR mutants where the tyrosine residues in the binding site for phosphoinositide 3-kinase (PI3K), GTPase-activating protein of Ras, Src homology 2 domain containing protein-tyrosine phosphatase-2, and phospholipase C-1 were replaced by Phe. Both PTEN oxidation and Akt phosphorylation did not occur in response to PDGF in the kinase-deficient mutant and in the PDGFβR mutant with a mutation in the PI3K binding site (Tyr740 and Tyr751). Thus, the kinase activity and the constituent Tyr740 and Tyr751 residues of PDGFβR in the cells stimulated with PDGF are responsible for the oxidation of PTEN and the Akt phosphorylation.  相似文献   

12.
Formation of intramolecular disulfide bonds is a key step in the early maturation of newly synthesized Mr 46,000 mannose 6-phosphate receptors to acquire ligand-binding activity (Hille, A., Waheed, A., and von Figura, K. (1990) J. Cell Biol. 110, 963-972). The luminal domain of the receptor, which carries the ligand-binding site, contains 6 cysteine residues. We have analyzed the function of individual cysteine residues for the ligand-binding conformation by exchanging cysteine for glycine. In each case, the replacement of cysteine resulted in a complete loss of binding activity, indicating that all 6 luminal cysteine residues are required for the ligand-binding conformation. The cysteine mutants displayed a greatly reduced immunoreactivity, decreased stability, and a blocked or delayed transport to the trans Golgi. The glycosylation pattern allowed the distinguishing of three phenotypes, each of which was represented by one pair of cysteine mutants. Based on the assumption that replacement of either of the 2 cysteine residues forming a disulfide bond results in an identical phenotype, we postulate that disulfide bonds are formed between Cys-32 and Cys-78 and between Cys-132 and Cys-167, as well as between Cys-145 and Cys-179. This assumption was supported by the observation that the simultaneous exchange of the 2 cysteine residues of a putative pair resulted in the same phenotypes as the single exchange of either of the 2 cysteine residues.  相似文献   

13.
PDGF binding to its receptor promotes the association with and stimulates the phosphorylation of PLC-gamma 1 at tyrosine and serine residues. Also, PDGF induces an increase in the hydrolysis of inositol phospholipids by PLC. How PDGF activates PLC was investigated by substituting phenylalanine for tyrosine at PLC-gamma 1 phosphorylation sites 771, 783, and 1254 and expressing the mutant enzymes in NIH 3T3 cells. Phenylalanine substitution at Tyr-783 completely blocked the activation of PLC by PDGF, whereas mutation at Try-1254 inhibited and mutation at Tyr-771 enhanced the response. Like the wild type, PLC-gamma 1 substituted with phenylalanine at Tyr-783 became associated with the PDGF receptor and underwent phosphorylation at serine residues in response to PDGF. These results suggest that PLC-gamma 1 is the PLC isozyme that mediates PDGF-induced inositol phospholipid hydrolysis, that phosphorylation on Tyr-783 is essential for PLC-gamma 1 activation. These results provide direct evidence that growth factor receptors activate the function of intracellular protein by tyrosine phosphorylation.  相似文献   

14.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

15.
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.  相似文献   

16.
Chiang WC  Knowles AF 《Biochemistry》2008,47(33):8775-8785
Human NTPDase 2 is a cell surface integral membrane glycoprotein that is anchored to the membranes by two transmembrane domains while the bulk of the protein containing the active site faces the extracellular milieu. It contains 10 conserved cysteine residues in the extracellular domain that are involved in disulfide bond formation and one free cysteine residue, C26, which is located in the N-terminal transmembrane domain. The human NTPDase 2 activity is inactivated by membrane perturbation that disrupts interaction of the transmembrane domains and is inhibited by p-chloromercuriphenylsulfonate (pCMPS), a sulfhydryl reagent. In this report, we show that C26 is the target of pCMPS modification, since a mutant in which C26 was replaced with a serine was no longer inhibited by pCMPS. Mutants in which cysteine residues are placed in the C-terminal transmembrane domain near the extracellular surface were still modified by pCMPS, but the degree of inhibition of their ATPase activity was lower than that of the wild-type enzyme. Thus, loss of the ATPase activity of human NTPDase 2 in the presence of pCMPS probably results from the disturbance of both transmembrane domain interaction and its active site. Inhibition of human NTPDase 2 activity by pCMPS and membrane perturbation is attenuated when the enzyme is cross-linked by glutaraldehyde. On the other hand, NTPDase 2 dimers formed from oxidative cross-linking of the wild-type enzyme and mutants containing a single cysteine residue in the C-terminal transmembrane domain displayed reduced ATPase activity. A similar reduction in activity was also obtained upon intramolecular disulfide formation in mutants that contain a cysteine residue in each of the two transmembrane domains. These results indicate that the mobility of the transmembrane helices is necessary for maximal catalysis.  相似文献   

17.
The ACTH receptor, also known as the melanocortin-2 receptor (MC2R), is critical for ACTH-mediated adrenal glucocorticoid release. Human MC2R (hMC2R) has 10 cysteine residues, which are located in extracellular loops (ELs), transmembrane domains (TMs), and intracellular loops (ILs). In this study, we examined the importance of these cysteine residues in receptor function and determined their involvement in disulfide bond formation. We replaced these cysteines with serine and expressed the mutated receptors in adrenal OS3 cells, which lack endogenous MC2R. Our results indicate that four mutations, C21S in NH(2) terminus, C245S, C251S, and C253S in EL3, resulted in significant decrease both in receptor expression and receptor function. Mutation of cysteine 231 in TM6 significantly decreased ACTH binding affinity and potency. In contrast, the five other mutated receptors (C64S, C158S, C191S, C267S, and C293S) did not significantly alter ACTH binding affinity and potency. These results suggest that extracellular cysteine residue 21, 245, 251, and 253, as well as transmembrane cysteine residue 231 are crucial for ACTH binding and signaling. Further experiments suggest that a disulfide bond exists between the residue C245 and C251 in EL3. These findings provide important insights into the importance of cysteine residues of hMC2R for receptor function.  相似文献   

18.
The extracellular domain of the p55 TNF receptor (TNFrED) is an important therapeutic protein for targeting tumor necrosis factor-alpha (TNF-alpha). The expression level of the TNFrED is low for bioproduction, which is presumably associated with the complication of pairing 24 cysteine residues to form correct disulfide bonds. Here we report the application of the yeast display method to study expression of TNFrED, a multimeric receptor. Randomly mutated libraries of TNFrED were screened, and two mutants were identified that express several-fold higher protein levels compared with the wild type while still retaining normal binding affinity for TNF-alpha. The substituted residues responsible for the higher protein expression in both mutants were identified as proline, and both proline residues are adjacent to cysteine residues involved in disulfide bonds. Analysis of the mutant residues revealed that the improved level of expression is due to conformational restriction of the substituted residues to that of the folded state seen in the crystal structures of TNFrED thereby forcing the neighboring cysteine residues into the correct orientation for proper disulfide bond formation.  相似文献   

19.
Site-directed PEGylation of human basic fibroblast growth factor   总被引:2,自引:0,他引:2  
Through site-directed mutagenesis, three cysteines of human basic fibroblast growth factor (hbFGF) were replaced with serine residues, resulting in a hbFGF mutant named hbFGFSer25,69,92. The mutant with only one cysteine residue at the 87th position, whose mitogenic activity was comparable to that of wild-type hbFGF, was further coupled to polyethylene glycol with a molecular size of 5 kDa (PEG5K) via the cysteine residue to obtain another hbFGF derivative, PEG5K-hbFGFSer25,69,92. The optimal modification reaction was conducted at 4 degrees C for 4 h at a molar ratio of PEG5K to hbFGFSer25,69,92 of 20:1. The result of SDS-PAGE showed that the modification extent was up to 80%. The modified product was purified by ion exchange chromatography. Compared to the hbFGF mutant, the purified PEG5K-hbFGFSer25,69,92 still retained about 60% of the mitogenic activity of the former, which provided a good basis for further studying the bioactivity of the PEGylated protein in vivo.  相似文献   

20.
We used site-directed mutagenesis to determine the minimum number of PDGF B residues needed to convert PDGF A to a potently transforming PDGF B-like molecule. Substitution of two PDGF B subdomains, 106-115 and 135-144, were found to be critical. These substitutions were sufficient to broaden the ability of PDGF A to activate beta as well as alpha platelet-derived growth factor (PDGF) receptors and increase its transforming efficiency to that of PDGF B. Within subdomain I, either PDGF B residues Arg-109 and Asn-115 or Arg-109, Leu-110, and Arg-113, in combination with subdomain II PDGF B residues Asn-136, Arg-137, and Arg-142 were identified as being essential. Those mutants with transforming ability comparable with PDGF B showed significantly lower efficiencies of beta receptor triggering. Thus, our studies identify a small number of PDGF B amino acids indispensable for beta PDGF receptor interaction and suggest that a low level of beta PDGF receptor activation is sufficient to dramatically increase PDGF transforming efficiency in NIH 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号