首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borkhvardt VG 《Ontogenez》2000,31(3):192-200
The development of the fin and limb buds involves a balance of centrifugal (active) and centripetal (passive) mechanical forces, the first of which acts to move the walls of these structures away from each other and the second holds them together. When the volume of the mesodermal core increases, the generated force meets with the resistance of the basal membrane, and as a result, the limb bud has a tendency to acquire cylindrical shape. Collagen fibers, individual mesenchymal cells, and their groups hold together the dorsal and the ventral wall of the limb bud, prevent the movement of these walls away from each other, and in this way direct bud growth along the proximodistal and the anteroposterior axes. The balance of the forces, which stretch the ectodermal layer, and those, which constrain it, have also been observed in the development of other body parts.  相似文献   

2.
A detailed and precise picture is being pieced together about how the pattern of digits develops in vertebrate limbs. What is particularly exciting is that it will soon be possible to trace the process all the way from establishment of a signalling centre in a small bud of undifferentiated cells right through to final limb anatomy. The development of the vertebrate limb is a traditional model in which to explore mechanisms involved in pattern formation, and there is accelerating knowledge about the genes involved. One reason why the limb is holding its place in the post-genomic age is that it is rich in pre-genomic embryology. Here, we will focus on recent findings about the aspect of vertebrate limb development concerned with digit pattern across the anteroposterior axis of the limb. This process is controlled by a signalling region in the early limb bud known as the polarizing region. Interactions between polarizing region cells and other cells in the limb bud ensure that a thumb develops at one edge of the hand (anterior) and a little finger at the other (posterior).  相似文献   

3.
4.
Limb development has long been a model system for studying vertebrate pattern formation. The advent of molecular biology has allowed the identification of some of the key genes that regulate limb morphogenesis. One important class of such genes are the homeobox-containing, or Hox genes. Understanding of the roles these genes play in development additionally provides insights into the evolution of limb pattern. Hox gene expression patterns divide the embryonic limb bud into five sectors along the anterior/posterior axis. The expression of specific Hox genes in each domain specifies the developmental fate of that region. Because there are only five distinct Hox-encoded domains across the limb bud there is a developmental constraint prohibiting the evolution of more than five different types of digits. The expression patterns of Hox genes in modern embryonic limb buds also gives clues to the shape of the ancestral fin field from which the limb evolved, hence elucidating the evolution of the tetrapod limb.  相似文献   

5.
Summary Paleontological and anatomical evidence suggests that the autopodium (hand or foot) is a novel feature that distinguishes limbs from fins, while the upper and lower limb (stylopod and zeugopod) are homologous to parts of the sarcopterygian paired fins. In tetrapod limb development Hoxa-11 plays a key role in differentiating the lower limb and Hoxa-13 plays a key role in differentiating the autopodium. It is thus important to determine the ancestral functions of these genes in order to understand the developmental genetic changes that led to the origin of the tetrapod autopodium. In particular it is important to understand which features of gene expression are derived in tetrapods and which are ancestral in bony fishes. To address these questions we cloned and sequenced the Hoxa-11 and Hoxa-13 genes from the North American paddlefish, Polyodon spathula, a basal ray-finned fish that has a pectoral fin morphology resembling that of primitive bony fishes ancestral to the tetrapod lineage. Sequence analysis of these genes shows that they are not orthologous to the duplicated zebrafish and fugu genes. This implies that the paddlefish has not duplicated its HoxA cluster, unlike zebrafish and fugu. The expression of Hoxa-11 and Hoxa-13 in the pectoral fins shows two main phases: an early phase in which Hoxa-11 is expressed proximally and Hoxa-13 is expressed distally, and a later phase in which Hoxa-11 and Hoxa-13 broadly overlap in the distal mesenchyme of the fin bud but are absent in the proximal fin bud. Hence the distal polarity of Hoxa-13 expression seen in tetrapods is likely to be an ancestral feature of paired appendage development. The main difference in HoxA gene expression between fin and limb development is that in tetrapods (with the exception of newts) Hoxa-11 expression is suppressed by Hoxa-13 in the distal limb bud mesenchyme. There is, however, a short period of limb bud development where Hoxa-11 and Hoxa-13 overlap similarly to the late expression seen in zebrafish and paddlefish. We conclude that the early expression pattern in tetrapods is similar to that seen in late fin development and that the local exclusion by Hoxa-13 of Hoxa-11 from the distal limb bud is a derived feature of limb developmental regulation.  相似文献   

6.
7.
The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs.  相似文献   

8.
Previous studies have implicated fibroblast growth factor receptor 1 (FGFR1) in limb development. However, the precise nature and complexity of its role have not been defined. Here, we dissect Fgfr1 function in mouse limb by conditional inactivation of Fgfr1 using two different Cre recombinase-expressing lines. Use of the T (brachyury)-cre line led to Fgfr1 inactivation in all limb bud mesenchyme (LBM) cells during limb initiation. This mutant reveals FGFR1 function in two phases of limb development. In a nascent limb bud, FGFR1 promotes the length of the proximodistal (PD) axis while restricting the dimensions of the other two axes. It also serves an unexpected role in limiting LBM cell number in this early phase. Later on during limb outgrowth, FGFR1 is essential for the expansion of skeletal precursor population by maintaining cell survival. Use of mice carrying the sonic hedgehog(cre) (Shh(cre)) allele led to Fgfr1 inactivation in posterior LBM cells. This mutant allows us to test the role of Fgfr1 in gene expression regulation without disturbing limb bud growth. Our data show that during autopod patterning, FGFR1 influences digit number and identity, probably through cell-autonomous regulation of Shh expression. Our study of these two Fgfr1 conditional mutants has elucidated the multiple roles of FGFR1 in limb bud establishment, growth and patterning.  相似文献   

9.
In developing limb bud, mesenchymal cells form cellular aggregates called "mesenchymal condensations". These condensations show the prepattern of skeletal elements of the limb prior to cartilage differentiation. Roles of various signaling molecules in chondrogenesis in the limb bud have been reported. One group of signaling factors includes the Wnt proteins, which have been shown to have an inhibitory effect on chondrogenesis in the limb bud. Therefore, regulation of Wnt activity may be important in regulating cartilage differentiation. Here we show that Frzb-1, which encodes a secreted frizzled-related protein that can bind to Wnt proteins and can antagonize the activity of some Wnts, is expressed in the developing limb bud. At early stages of limb development, Frzb-1 is expressed in the ventral core mesenchyme of the limb bud, and later Frzb-1 expression becomes restricted to the central core region where mesenchymal condensations occur. At these stages, a chondrogenic marker gene, aggrecan, is not yet expressed. As limb development proceeds, expression of Frzb-1 is detected in cartilage primordial cells, although ultimately Frzb-1 expression is down-regulated. Similar results were obtained in the recombinant limb bud, which was constructed from dissociated and re-aggregated mesenchymal cells and an ectodermal jacket with the apical ectodermal ridge. In addition, Frzb-1 expression preceded aggrecan expression in micromass cultures. These results suggest that Frzb-1 has a role in condensation formation and cartilage differentiation by regulating Wnt activity in the limb bud.  相似文献   

10.
The formation of supernumerary limbs and limb structures was studied by juxtaposing normally nonadjacent embryonic chick limb bud tissue. A “wedge” (ectoderm and mesoderm) of anterior or mid donor right wing bud (stage 21) was inserted in a slit made in a host right limb bud (stage 21) at the same position as its position of origin or to a more posterior position. The AER of the donor tissue and host wing bud were aligned with each other. Donor tissue was grafted with its dorsalventral polarity the same as the host's limb bud or reversed to that of the host's. Depending on the position of origin of the donor limb bud tissue and the position to which it was transplanted in a host, supernumerary wings or wing structures formed. Furthermore, depending on the orientation of the graft in the host, supernumerary limbs with either left or right asymmetry developed. The results of experiments performed here are considered in light of two current models which have been used to describe supernumerary limb formation: one based on local, short-range, cell-cell interactions and the other based on long-range positional signaling via a diffusible morphogen.  相似文献   

11.
Arthropods and in particular crustaceans show a great diversity concerning their limb morphology. This makes the homologization of limbs and their parts and our understanding of evolutionary transformations of these limb types problematical. To address these problems we undertook a comparative study of the limb development of two representatives of branchiopod crustaceans, one with phyllopodous the other with stenopodous trunk limbs. The trunk limb ontogeny of a 'larger branchiopod', Cyclestheria hislopi ('Conchostraca') and the raptorial cladoceran Leptodora kindtii (Haplopoda) has been examined by various methods such as SEM, Hoechst fluorescent stain and expression of the Distal-less gene. The early ontogeny of the trunk limbs in C. hislopi and L. kindtii is similar. In both species the limbs are formed as ventrally placed, elongate, subdivided limb buds. However, in C. hislopi, the portions of the early limb bud end up constituting the endites and the endopod of the phyllopodous filtratory limb in the adult, whereas in L. kindtii, similar limb bud portions end up constituting the actual segments in the segmented, stenopodous, and raptorial trunk limbs of the adults. Hence, the portions of the limbs corresponding to the endites of the phyllopodous trunk limbs in C. hislopi (and other 'larger branchiopods') are homologous to the segments of the stenopodous trunk limbs in L. kindtii. It is most parsimonious to assume that the segmented trunk limbs in L. kindtii have developed from phyllopodous limbs with endites and not vice versa. This study has demonstrated at least one way in which segmented limbs have been derived from phyllopodous, multi-lobate limbs during evolution. Similar pathways can be assumed for the evolution of stenopodous, segmented and uniramous limbs in other crustaceans. Irrespective of the differences in the adult limb morphology, the early patterning of arthropod limbs seems to follow a similar principle.  相似文献   

12.
Fibroblast growth factor homologous factors (FHFs) have been implicated in limb and nervous system development. In this paper we describe the expression of the cFHF-4 gene during early chicken development. cFHF-4 is expressed in the paraxial mesoderm, lateral ridge, and, most prominently, in the posterior-dorsal side of the base of each limb bud. The expression pattern of cFHF-4 at the base of the limbs is not altered by tissue grafts containing the zone of polarizing activity (ZPA), by implants of Shh-expressing cells, or by implants of beads containing retinoic acid, nor does it depend on the distal growth of the limb as it is not altered in limb buds that are surgically truncated. In three chicken mutants affecting limb patterning - talpid(2), limbless, and wingless - altered patterns of cFHF-4 expression are correlated with abnormal nerve plexus formation and altered patterns of limb bud innervation. Similarly, ectopic expression of cFHF-4 is correlated with a local induction of limb-like innervation patterns when beads containing FGF-2 are implanted in the flank. In these experiments, both ectopic innervation and ectopic expression of cFHF-4 in the flank were observed regardless of the size of the FGF-2-induced outgrowths. By contrast, ectopic expression of Shh and HoxD13 are seen only in the larger FGF-2-induced outgrowths. Taken together, these data suggest that cFHF-4 regulates or is coregulated with early events related to innervation at the base of the limbs.  相似文献   

13.
The recombinant limb is a model system that has proved fruitful for analyzing epithelial-mesenchymal interactions and understanding the functional properties of the components of the limb bud. Here we present an overview of some of the insights obtained through the use of this technique. Among these are the understanding that fore or hind limb identity is inherent to the limb bud mesoderm, that the apical ectodermal ridge (AER) is a permissive signaling center and that the limb bud ectoderm plays a central role in the control of dorsoventral polarity. Recombinant limb studies have also allowed the identification of the affected tissue component in several limb mutants. More recently this model has been applied to the study of regulation of gene expressions related to patterning. In this report we use recombinant limbs to analyze pattering of the Pax3 expressing limb muscle cell lineage in the early stages of limb development. In recombinant limbs made without the zone of polarizing activity (ZPA), myoblasts appear intermingled with other mesodermal cells at the beginning of the recombinant limb development. Rapidly thereafter, the muscle precursors segregate and organize around the central forming chondrogenic core of the recombinant. Although this segregation is reminiscent of that occurring during normal development, the myoblasts in the recombinant fail to proliferate appropriately and also fail to migrate distally. Consequently, the muscle pattern in the recombinant limb is defective indicating that normal patterning cues are absent. However, recombinant limbs polarized with a ZPA exhibited a larger mass of muscle cells and a more normal morphogenesis, supporting a role for this signaling center in limb muscle development. Finally, we have ruled out host somite contributions to recombinant limbs by grafting chick recombinant limbs to quail hosts. This initial report demonstrates the value of the recombinant limb model system for dissecting the environmental cues required for normal muscle limb patterning. Received: 31 August 1998 / Accepted: 29 September 1998  相似文献   

14.
15.
Ectodermal Wnt-6 promotes Myf5-dependent avian limb myogenesis   总被引:1,自引:0,他引:1  
Limb muscles of vertebrates are derived from precursor cells that migrate from the lateral edge of the dermomyotome into the limb bud. Although several signaling molecules have been reported to be involved in the process of limb myogenesis, none of their activities has led to a consolidate idea about the limb myogenic pathway. Particularly, the role of ectodermal signals in limb myogenesis is still obscure. Here, we investigated the role of the ectoderm and ectodermal Wnt-6 during limb muscle development. We found that ectopic expression of Wnt-6 in the limb bud specifically extends the expression domains of Pax3, Paraxis, Myf5, Myogenin, Desmin and Myosin heavy chain (MyHC) but inhibits MyoD expression. Ectoderm removal results in a loss of expression of all of these myogenic markers. We show that Wnt-6 can compensate the absence of the ectoderm by rescuing the expression of Pax3, Paraxis, Myf5, Myogenin, Desmin and MyHC but not MyoD. These results show that, in chick, at least two signals from the limb ectoderm are necessary for muscle development. One of the signals is Wnt-6, which plays a unique role in promoting limb myogenesis via Pax3/Paraxis-Myf5, whereas the other putative signaling pathway involving MyoD expression is negatively regulated by Wnt-6 signaling.  相似文献   

16.
Bone morphogenetic protein signaling in limb outgrowth and patterning   总被引:4,自引:1,他引:3  
Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor beta (TGFbeta) multigene family. Current evidence indicates that they may play different and even antagonistic roles at different stages of limb development. Refined studies of their function in these processes have been impeded in the mouse due to the early lethality of null mutants for several BMP ligands and their receptors. Recently, however, these questions have benefited from the very powerful Cre-loxP technology. In this review, I intend to summarize what has been learned from this conditional mutagenesis approach in the mouse limb, focusing on Bmp2, Bmp4 and Bmp7 while restricting my analysis to the initial phases of limb formation and patterning. Two major aspects are discussed, the role of BMPs in dorsal-ventral polarization of the limb bud, together with their relation to apical ectodermal ridge (AER) induction, and their role in controlling digit number and identity. Particular attention is paid to the methodology, its power and its limits.  相似文献   

17.
A staging system for mouse limb development   总被引:7,自引:0,他引:7  
A series of 15 stages of development for the mouse limb bud have been defined, spanning the time from the first appearance of the limb bud to the completion of limb outgrowth. The stages are based on changes in the morphology of the limb in living preparations. The development and regression of the apical ectodermal ridge (AER) as well as the development of the skeletal structures are also described. This staging system has been developed in response to the need to standardize in situ experimental analyses of the mouse limb bud. Comparable stages of the commonly used chick wing and mouse whole embryo systems are presented.  相似文献   

18.
19.
A crucial issue in limb development is how a correct set of precisely shaped digits forms in the digital plate. This process relies on patterning across the anterior-posterior axis of the limb bud, which is under the control of Sonic hedgehog emanating from the zone of polarizing activity. Recently, Sonic hedgehog function in the limb bud has been shown to have a dual character controlling both growth and patterning of the digital field. This finding has prompted the proposal of new models of how these two functions are achieved, and this will be discussed in this review.  相似文献   

20.
During chick limb development the gap junction protein Connexin-43 (Cx43) is expressed in discrete spatially restricted domains in the apical ectodermal ridge (AER) and mesenchyme of the zone of polarising activity. Antisense oligonucleotides (ODNs) were used to investigate the role of Connexin-43 (Cx43) in the development of the chick limb bud. We have used unmodified ODNs in Pluronic F-127 gel, which is liquid at low temperature but sets at room temperature and so remains situated at the point of application. As a mild surfactant, the gel increases antisense ODN penetration and supplies ODNs to the embryo continually for 12-18 h. We have shown a strong decrease in Cx43 protein expression after application of specific antisense oligonucleotides but the abundance of a closely related protein, Connexin-32 (Cx32), was not affected. Application of antisense Cx43 ODNs at stages 8-15 HH before limb outgrowth resulted in dramatic limb phenotypes. About 40% of treated embryos exhibited defects such as truncation of the limb bud, fragmentation into two or more domains, or complete splitting of the limb bud into two or three branches. Molecular analysis of antisense treated embryos failed to detect Shh or Bmp-2 in anterior structures and suggested that extra lobes seen in nicked and split limbs were not a result of establishment of new signalling centres as found after the application of FGF to the flank. However, examination of markers for the AER showed a number of abnormalities. In severely truncated specimens we were unable to detect the expression of either Fgf-4 or Fgf-8. In both nicked and split limbs the expression of these genes was discontinuous. Down-regulation of Cx43 after the antisense application could be comparable to AER removal and results in distal truncation of the limb bud. Taken together these data suggest the existence of a feedback loop between the FGFs and signalling mediated by Cx43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号