首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Under limited moisture conditions, roots can play an outstanding role with respect to yield stability by effective absorption of water from soil. A targeted integration of root traits into plant breeding programs requires knowledge on the existing root diversity and access to easy and cost-effective methods. This study aimed to assess wheat root diversity, root properties in relation to water regime, and the efficiency of root capacitance for in situ screening.

Methods

Root morphological, anatomical properties and root capacitance of wheat species from different ploidy levels were studied under field conditions in 2 years contrasting in water regime. Soil water content was weekly measured.

Results

Significant genotypic differences were observed for most root traits. The investigated genotypes exploited different strategies to maximize soil water depletion, e.g. high topsoil root length density, low tissue mass density, high specific root length, deep rooting and looser xylem vessels. Multivariate statistics of root traits revealed an acceptable genotypic differentiation according to regional origin, genetics and capacity to extract soil water.

Conclusions

Under supply-driven environments, dehydration avoidance via water uptake maximization can be achieved through high topsoil rooting density. In this regard, root capacitance can be useful for in situ screening.  相似文献   

2.
Certain soil microorganisms can improve plant growth, and practices that encourage their proliferation around the roots can boost production and reduce reliance on agrochemicals. The beneficial effects of the microbial inoculants currently used in agriculture are inconsistent or short-lived because their persistence in soil and on roots is often poor. A complementary approach could use root exudates to recruit beneficial microbes directly from the soil and encourage inoculant proliferation. However, it is unclear whether the release of common organic metabolites can alter the root microbiome in a consistent manner and if so, how those changes vary throughout the whole root system. In this study, we altered the expression of transporters from the ALUMINUM-ACTIVATED MALATE TRANSPORTER and the MULTIDRUG AND TOXIC COMPOUND EXTRUSION families in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) and tested how the subsequent release of their substrates (simple organic anions, including malate, citrate, and γ-amino butyric acid) from root apices affected the root microbiomes. We demonstrate that these exudate compounds, separately and in combination, significantly altered microbiome composition throughout the root system. However, the root type (seminal or nodal), position along the roots (apex or base), and soil type had a greater influence on microbiome structure than the exudates. These results reveal that the root microbiomes of important cereal species can be manipulated by altering the composition of root exudates, and support ongoing attempts to improve plant production by manipulating the root microbiome.

One-sentence summary: The root microbiome of rice and wheat can be manipulated by altering the activity of root transporters and exudates.  相似文献   

3.
Abstract

We review the applications of REL test as a technique for detecting injury and thereby forecasting survivability of transplanted seedlings. The objectives of the present review are to present the fundamentals of this method, assess the relevant literature, present evidence of seasonal variations of REL, describe how REL responds to different stress conditions, suggest priorities for future research as well as practical recommendations for REL testing, and assess leakage of organic compounds as an indicator of root damage. Seasonal changes in REL may be connected with root freezing tolerance that varies among plants of different seed sources and species and thus does not always indicate health state of seedlings. REL technique can be used for assessing frost hardiness of roots under certain conditions (e.g. roots should be sampled into the test tubes prior to the freezing test). It can be used for studying heat stress with certain prerequisites (e.g. series of high temperatures or different exposure times should be used to find a threshold for heat tolerance). In desiccation tolerance assessment, REL presents high variation depending on species. In case of rough handling or hypoxic conditions, the effect depends on certain developmental stages. Additionally, though REL may be useful in quantifying damage caused by cold storage, it should be considered as a relative index of plant quality only since the relationship between REL and survivability could vary depending on cultural and handling practices prior to planting as well as on post-planting environmental conditions. In some cases, REL is correlated with field performance of seedlings, but in other cases the correlation is weak. Factors as species, seed lots, developmental stage of root tissue, season, and bud dormancy intensity may affect REL. Thus, REL must first be calibrated to these factors before it can be reliably used to predict the field performance of all types of seedling stock. Ambient storage, ageing and amino acids and protein leakage are also discussed. Limitations and questions for future research are suggested (e.g. species-dependence and decreasing variation). In general, REL is casually and statistically related with root damage and survivability of seedling. However, it depends on many other factors apart from root damages, and thus it remains a great challenge to improve its reliability.  相似文献   

4.
Nitrogen regulation of root branching   总被引:18,自引:0,他引:18  
BACKGROUND: Many plant species can modify their root architecture to enable them to forage for heterogeneously distributed nutrients in the soil. The foraging response normally involves increased proliferation of lateral roots within nutrient-rich soil patches, but much remains to be understood about the signalling mechanisms that enable roots to sense variations in the external concentrations of different mineral nutrients and to modify their patterns of growth and development accordingly. SCOPE: In this review we consider different aspects of the way in which the nitrogen supply can modify root branching, focusing on Arabidopsis thaliana. Our current understanding of the mechanism of nitrate stimulation of lateral root growth and the role of the ANR1 gene are summarized. In addition, evidence supporting the possible role of auxin in regulating the systemic inhibition of early lateral root development by high rates of nitrate supply is presented. Finally, we examine recent evidence that an amino acid, L-glutamate, can act as an external signal to elicit complex changes in root growth and development. CONCLUSIONS: It is clear that plants have evolved sophisticated pathways for sensing and responding to changes in different components of the external nitrogen supply as well as their own internal nitrogen status. We speculate on the possibility that the effects elicited by external L-glutamate represent a novel form of foraging response that could potentially enhance a plant's ability to compete with its neighbours and micro-organisms for localized sources of organic nitrogen.  相似文献   

5.
植物的根系分泌物是植物根系与周围环境之间的化学媒介,通过传递特定的信息,调节根际微环境,影响周围植物的生长。玉米(Zea mays L.)和荞麦(Fagopyrum esculentum Moench)是农作物间套作体系中典型的不能搭配的组合,其障碍因素尚不清楚。以玉米为受体植物,采用根悬空培养的方法,研究了荞麦、高粱(Sorghum bicolor(L.) Moench)根系分泌物对玉米根边缘细胞和根生长的影响。结果发现,玉米根边缘细胞离体培养条件下,用荞麦根系分泌物中的小分子物质处理4、8 h显著诱导边缘细胞凋亡、死亡,细胞活率分别比对照降低了71.6%和72.3%;荞麦根系分泌物中的小分子物质对玉米根产生氧化胁迫,诱导根SOD、POD和CAT活性分别比对照高22.6%、33.9%和107.2%,根中超氧阴离子(O2)和脯氨酸含量分别比对照高33.9%和49.8%;荞麦根系分泌物中小分子物质的胁迫使根细胞膜透性增大,与对照相比升高80.0%,丙二醛(MDA)含量比对照升高31.5%;荞麦根系分泌物中小分子物质诱导根内源激素(IAA)含...  相似文献   

6.
AIMS: The purpose of this Botanical Briefing is to stimulate reappraisal of root growth, root/shoot partitioning, and analysis of other aspects of plant growth under heterogeneous conditions. SCOPE: Until recently, most knowledge of plant growth was based upon experimental studies carried out under homogeneous conditions. Natural environments are heterogeneous at scales relevant to plants and in forms to which they can respond. Responses to environmental heterogeneity are often localized rather than plant-wide, and not always predictable from traditional optimization arguments or from knowledge of the ontogenetic trends of plants growing under homogeneous conditions. These responses can have substantial impacts, both locally and plant-wide, on patterns of resource allocation, and significant effects on whole-plant growth. Results from recent studies are presented to illustrate responses of plants, plant populations and plant communities to nutritionally heterogeneous conditions. CONCLUSIONS: Environmental heterogeneity is a constant presence in the natural world that significantly influences plant behaviour at a variety of levels of complexity. Failure to understand its effects on plants prevents us from fully exploiting aspects of plant behaviour that are only revealed under patchy conditions. More effort should be invested into analysis of the behaviour of plants under heterogeneous conditions.  相似文献   

7.
8.
Root architecture plays an important role in water and nutrient acquisition and in the ability of the plant to adapt to the soil. Lateral root development is the main determinant of the shape of the root system and is controlled by external factors such as nutrient concentration. Here it is shown that lateral root initiation and root gravitropism, two processes that are regulated by auxin, are co-regulated in Arabidopsis. A mathematical model was generated that can predict the effects of gravistimulations on lateral root initiation density and suggests that lateral root initiation is controlled by an inhibitory fields mechanism. Moreover, gene transactivation experiments suggest a mechanism involving a single auxin transport route for both responses. Finally, co-regulation may offer a selective advantage by optimizing soil exploration as supported by a simple quantitative analysis.  相似文献   

9.
Phytotropins, even those not absorbing in the visible region of the spectrum, can induce a phototropic response in maize ( Zea mays L. cv. PX-75) roots when illuminated unilaterally with white light. The most active phytotropin, 2-(1-pyrenoyl) benzoic acid (PBA) can elicit a full response at 10 μ M , while the other active molecules, 2-carboxyphenyl-3-phenylpropane-1,3-dione (CPD), 2-carboxyphenyl-3-phenyl-1,2-pyrazole (CPP), 1-N-naphthylphthalamic acid (NPA) and erythrosin elicit a full response at 100 μ M . The less active phytotropins BBA and fluorescein give a reduced response. It is suggested that the observed effect cannot be explained solely on the basis of auxin transport inhibition. There is a photoreceptor in the extension zone of the root, which may be associated in some way with the receptor for NPA. The results are consistent with the proposal that the phototropic process may form part of the root gravitropic response mechanism.  相似文献   

10.
Roots of tomato seedlings can be induced to coil by treatment with ethylene. The extent of coiling is dependent on the level of ethylene to which the seedlings are exposed and can be prevented by the incorporation of Ag ions into the growing medium. In contrast to all other tomato mutants examined, roots of the mutant diageotropica do not reorientate their growth in response to ethylene. The results of an agar penetration test indicate that roots of this mutant are agravitropic. The relationship between gravitropism and root coiling, and the origin of the ethylene modified growth pattern is discussed.  相似文献   

11.
Summary A machine for determining the root length of a sample is described. The machine is basically an opto-electronic scanner. Root segments are cut and placed in water on a glass plate (375×375 mm). The interruption of a light beam moving across the root sample is detected by a photo-diode and the total root length computed. Using this machine a root sample can be measured in less than 3 minutes. Detailed calibration was only conducted up to 50 m although samples as large as several hundred metres can be measured using this machine.The machine has a high degree of accuracy comparable with or better than other reported methods for determining root length.  相似文献   

12.
During development cells transit through different states as they pass from stem cell to terminally differentiated cell. There is evidence that the transition from one state to another can be accompanied by changes in epigenetic state of genes, which is embodied in chromatin state. Here we give an overview of the changes in chromatin that accompany the regulation of expression and review the evidence for the involvement of such changes during epidermal root development and discuss the roles that these changes play in the differentiation of the cell types involved.  相似文献   

13.
Summary A strategy to obtain fractions enriched in mucilages secreted by root caps or produced by the rhizodermis of axenicallygrown maize seedlings is proposed. It involves a two-step procedure allowing the successive collection of root exudates and surface extracts from the same set of intact, sterile maize plants. Cytological controls were performed at each phase of collection. Whereas root cap mucilage is easily collected in water after one day's extraction, under conditions favouring secretory activity, rhizodermal mucilage remains tightly adherent to the root surface. It can be better extracted using neutral saline buffer assisted by gentle shaking at low temperature. Acidic saline buffer is unsuitable as it induces cell lysis and release of cell wall components.Biochemical analyses confirm that fractions enriched in root cap mucilage contain very high levels of fucose and galactose, high levels of arabinose, xylose and glucose and trace amounts of mannose. Fractions enriched in rhizodermal mucilage contain large amounts of glucose, moderate amounts of arabinose, xylose, mannose and galactose and trace levels of fucose. Isoelectric focusing and SDS-PAGE indicate that there are numerous similarities in the protein composition of materials enriched in root cap mucilages from root exudates or aqueous root surface extracts. However, specific protein bands that could be characteristic of rhizodermal mucilage are obtained using neutral saline buffer extracts. According to these biochemical data, the two-step procedure used in the present study appears to be useful for further biochemical characterization of both types of mucilages.Abbreviations BSA bovine serum albumin - BSTFA N,O-bis (trimethylsilyl)-trifluoroacetamide - DTT dithiothreitol - i. d. internal diameter - MW molecular weight - PATAg periodic acid-thiosemicarbazide-silver proteinate - PVPP polyvinylpolypyrrolidone - RE root exudates - RSE root surface extracts - TMCS trimethylchlorosilane - TMS trimethylsilyl  相似文献   

14.
15.
2,4-diacetylphloroglucinol alters plant root development   总被引:1,自引:0,他引:1  
Pseudomonas fluorescens isolates containing the phlD gene can protect crops from root pathogens, at least in part through production of the antibiotic 2,4-diacetylphloroglucinol (DAPG). However, the action mechanisms of DAPG are not fully understood, and effects of this antibiotic on host root systems have not been characterized in detail. DAPG inhibited primary root growth and stimulated lateral root production in tomato seedlings. Roots of the auxin-resistant diageotropica mutant of tomato demonstrated reduced DAPG sensitivity with regards to inhibition of primary root growth and induction of root branching. Additionally, applications of exogenous DAPG, at concentrations previously found in the rhizosphere of plants inoculated with DAPG-producing pseudomonads, inhibited the activation of an auxin-inducible GH3 promoter::luciferase reporter gene construct in transgenic tobacco hypocotyls. In this model system, supernatants of 17 phlD+ P. fluorescens isolates had inhibitory effects on luciferase activity similar to synthetic DAPG. In addition, a phlD() mutant strain, unable to produce DAPG, demonstrated delayed inhibitory effects compared with the parent wild-type strain. These results indicate that DAPG can alter crop root architecture by interacting with an auxin-dependent signaling pathway.  相似文献   

16.
The root growth simulation model of Diggle (ROOTMAP; 1988) was modified to allow the numerical output of data on root intersections with horizontal and vertical planes. ROOTMAP was used to generate two three-dimensional model structures of fibrous root systems. The lateral roots were oriented randomly (geotropism index=0) but the main axes were positively gravitropic (geotropism index=0.6). The mean density of root intersections (n, cm-2) with the sides of a series of 5×5×5 cm cubic volumes was related approximately linearly to the root length density (Lt cm-2) within each volume by the equation Lt=2.3n (correlation coefficient, r=0.981). This compared with the relation of Lt=2n predicted theoretically for randomly oriented lines (Melhuish and Lang, 1968). Root length density was related to the intersection density by the equation Lt=2.43nv (r=0.940) for the vertical faces and Lt=1.88nh (r=0.984) for the horizontal faces. Lt/nv was greater than Lt/nh because of the preferential vertical orientation of the main root axes. The Melhuish and Lang (1968) equation does not generally give accurate prediction of root length density from field experiment data. Under field conditions, values have been reported in the ranges of 1.4 to 16 for Lt/nh, and 3.8 to 9 for Lt/nv. The most likely explanation for this difference is that only a small proportion (e.g. about 20–30%) of the actual number of roots are counted using the core-break and root mapping (including the trench wall) methods, due to the practical experimental difficulties of identifying individual fine roots under field conditions. Detailed experimental studies are needed to identify what portion of the root system is recorded using these field techniques (e.g. whether the main root axes are counted while the fine lateral roots remain undetected). Three-dimensional models of root growth provide a new method of studying the relations between Lt, nv and nh for root systems generated stochastically according to known geometrical rules. Using these models it will be possible to determine the effects of the degree of gravitropism and of root branching on the value and on the variability of Lt/nh and Lt/nv. The effectiveness of the statistical corrections that have been developed to correct for non-random root orientation can also be evaluated, as can the effects of sample position.  相似文献   

17.
根压的本质   总被引:3,自引:0,他引:3  
董忠民 《西北植物学报》2003,23(7):1098-1104
在植物弱蒸腾情况下,木质部的水分处于正压状态,这种压力叫根压。关于根压有不少相互矛盾的假说,大致可分为两大类:单相模型和双相模型。单相模型不强调水流:疗向,基本上只将根中的共质体作为一层连续的半透膜看待。单相模型包括分泌理论、电渗理论、渗透理论和渗透持续梯度理论。而根压的双相模型认为根中有具有不同反弹系数的双膜系统,即高反弹系数的外膜和低反弹系数的内膜。本文对这些根压理论进行了总结和分析,并结合一些新的研究成果,特别是对根中薄壁细胞有节律性地收缩和松弛及对水通道蛋白的研究,对根压的本质和产生机理进行了深入的讨论。  相似文献   

18.
Here we describe the use of Pisum sativum L. as a model system to measure how short-term treatment of root tips with soluble metabolites can influence root growth and release of root exudates. The results revealed that even a 3-minute exposure of root tips to metabolites normally released from roots into the rhizosphere (e.g. rhamnose, ferulic acid, salicylic acid) can significantly influence root growth without affecting production of border cells and associated exudates. Conversely, products including caffeine, saccharide lactone, and pisatin alter production of border cells, without affecting root growth. Understanding how root-derived and exogenous metabolites can selectively impact root function may yield benefits in crop production, especially in greenhouse agriculture systems where growing roots can be exposed to a significant accumulation of plant exudates.  相似文献   

19.
The nutritional control of root development   总被引:61,自引:2,他引:59  
Forde  Brian  Lorenzo  Helena 《Plant and Soil》2001,232(1-2):51-68
Root development is remarkably sensitive to variations in the supply and distribution of inorganic nutrients in the soil. Here we review examples of the ways in which nutrients such as N, P, K and Fe can affect developmental processes such as root branching, root hair production, root diameter, root growth angle, nodulation and proteoid root formation. The nutrient supply can affect root development either directly, as a result of changes in the external concentration of the nutrient, or indirectly through changes in the internal nutrient status of the plant. The direct pathway results in developmental responses that are localized to the part of the root exposed to the nutrient supply; the indirect pathway produces systemic responses and seems to depend on long-distance signals arising in the shoot. We propose the term `trophomorphogenesis' to describe the changes in plant morphology that arise from variations in the availability or distribution of nutrients in the environment. We discuss what is currently known about the mechanisms of external and internal nutrient sensing, the possible nature of the long-distance signals and the role of hormones in the trophomorphogenic response.  相似文献   

20.
Summary This paper provides some quantitative data on the relationship between the rate of uptake of phosphorus and potassium from soil and the amount of root, root density and rate of root growth. Three experiments were conducted with winter wheat, all grown in the same soil. Root growth and density were manipulated in three ways: (1) by root pruning; (2) by a split-root technique; (3) by growing plants in different soil volumes. Root lengths as well as weights were determined.Potassium uptake per unit amount of root was generally lower the higher the root density, suggesting that roots were competing with each other for potassium even at the lowest density. In contrast, phosphorus uptake showed a good correlation with root growth irrespective of root density or plant age. Phosphorus uptake during a period was more closely and consistently correlated with root growth during that period than with the total amount of root on the plant. The results can be explained in terms of ion supply to the root surface, taking into account the diffusion coefficients of the ions and the approximate distances between neighbouring roots.Now Mrs. Watkins; address 39 Leach Heath Lane, Rubery, Birmingham.Now Mrs. Watkins; address 39 Leach Heath Lane, Rubery, Birmingham.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号