首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to assess the time course and the origin of adaptations in neuromuscular function as a consequence of prolonged bed rest with or without countermeasure. Twenty healthy males volunteered to participate in the present study and were randomly assigned to either an inactive control group (Ctrl) or to a resistive vibration exercise (RVE) group. Prior to, and seven times during bed rest, we recorded high-density surface electromyogram (sEMG) signals from the vastus lateralis muscle during isometric knee extension exercise at a range of contraction intensities (5–100% of maximal voluntary isometric torque). The high-density sEMG signals were analyzed for amplitude (root mean square, RMS), frequency content (median frequency, Fmed) and muscle fiber conduction velocity (MFCV) in an attempt to describe bed rest-induced changes in neural activation properties at the levels of the motor control and muscle fibers. Without countermeasures, bed rest resulted in a significant progressive decline in maximal isometric knee extension strength, whereas RMS remained unaltered throughout the bed rest period. In line with observed muscle atrophy, both Fmed and MFCV declined during bed rest. RVE training during bed rest resulted in maintained maximal isometric knee extension strength, and a strong increase (~30%) in maximal EMG amplitude, from 10 days of bed rest on. Exclusion of other factors led to the conclusion that the RVE training increased motor unit firing rates as a consequence of an increased excitability of motor neurons. An increased firing rate might have been essential under training sessions, but it did not affect isometric voluntary torque capacity.  相似文献   

2.
Substantial evidence exists for the age-related decline in muscle strength and neural function, but the effect of long-term disuse in the elderly is largely unexplored. The present study examined the effect of unilateral long-term limb disuse on maximal voluntary quadriceps contraction (MVC), lean quadriceps muscle cross-sectional area (LCSA), contractile rate of force development (RFD, Delta force/Delta time), impulse (integral force dt), muscle activation deficit (interpolated twitch technique), maximal neuromuscular activity [electromyogram (EMG)], and antagonist muscle coactivation in elderly men (M: 60-86 yr; n = 19) and women (W: 60-86 yr; n = 20) with unilateral chronic hip-osteoarthritis. Both sides were examined to compare the effect of long-term decreased activity on the affected (AF) leg with the unaffected (UN) side. AF had a significant lower MVC (W: 20%; M: 20%), LCSA (W: 8%; M: 10%), contractile RFD (W: 17-26%; M: 15-24%), impulse (W: 10-19%, M: 19-20%), maximal EMG amplitude (W: 22-25%, M: 22-28%), and an increased muscle activation deficit (-18%) compared with UN. Furthermore, women were less strong (AF: 40%; UN: 39%), had less muscle mass (AF: 33%; UN: 34%), and had a lower RFD (AF: 38-50%; UN: 41-48%) compared with men. Similarly, maximum EMG amplitude was smaller for both agonists (AF: 51-63%; UN: 35-61%) and antagonist (AF: 49-64%; UN: 36-56%) muscles in women compared with men. However, when MVC and RFD were normalized to LCSA, there were no differences between genders. The present data demonstrate that disuse leads to a marked loss of muscle strength and muscle mass in elderly individuals. Furthermore, the data indicate that neuromuscular activation and contractile RFD are more affected by long-term disuse than maximal muscle strength, which may increase the future risk for falls.  相似文献   

3.
This study examines the age-related deficit in force of the ankle dorsiflexors during isometric (Iso), concentric (Con), and eccentric (Ecc) contractions. More specifically, the contribution of neural and muscular mechanisms to the loss of voluntary force was investigated in men and women. The torque produced by the dorsiflexors and the surface electromyogram (EMG) from the tibialis anterior and the soleus were recorded during maximal Iso contractions and during Con and Ecc contractions performed at constant angular velocities (5-100 degrees/s). Central activation was tested by the superimposed electrical stimulation method during maximal voluntary contraction and by computing the ratio between voluntary average EMG and compound muscle action potential (M wave) induced by electrical stimulation (average EMG/M wave). Contractile properties of the dorsiflexor muscles were investigated by recording the mechanical responses to single and paired maximal stimuli. The results showed that the age-related deficit in force (collapsed across genders and velocities) was greater for Iso (20.5%; P < 0.05) and Con (38.6%; P < 0.001) contractions compared with Ecc contractions (6.5%; P > 0.05). When the torque produced during Con and Ecc contractions was expressed relative to the maximal Iso torque, it was significantly reduced in Con contractions and increased in Ecc contractions with aging, with the latter effect being more pronounced for women. In both genders, voluntary activation was not significantly impaired in elderly adults and did not differ from young subjects. Similarly, coactivation was not changed with aging. In contrast, the mechanical responses to single and paired stimuli showed a general slowing of the muscle contractile kinetics with a slightly greater effect in women. It is concluded that the force deficit during Con and Iso contractions of the ankle dorsiflexors in advanced age cannot be explained by impaired voluntary activation or changes in coactivation. Instead, this age-related adaptation and the mechanisms that preserve force in Ecc contractions appeared to be located at the muscular level.  相似文献   

4.
This study examined the validity of the twitch interpolation technique for evaluating side-to-side asymmetries in quadriceps neuromuscular function. Fifty-six subjects with a wide range of asymmetries (19 healthy, 24 with unilateral and 13 with bilateral anterior cruciate ligament reconstruction) took part in the study. Supramaximal electrical paired stimuli were delivered to the quadriceps muscle during and immediately after a maximal voluntary contraction (MVC) of the knee extensors (twitch interpolation technique). MVC torque, voluntary activation and resting doublet-evoked torque were measured separately for the two sides, and percent side-to-side asymmetries were calculated for each parameter. MVC torque asymmetry was plotted against voluntary activation asymmetry and doublet-evoked torque asymmetry, and a multiple regression analysis was also conducted. Significant positive correlations were observed between MVC torque asymmetry and both voluntary activation asymmetry (r = 0.40; p = 0.002) and doublet-evoked torque asymmetry (r = 0.53; p < 0.001), and their relative contribution to MVC torque asymmetry was comparable (r = 0.64; p < 0.001). These results establish the validity of the twitch interpolation technique for the assessment of neuromuscular asymmetries. This methodology could provide useful insights into the contribution of some neural and muscular mechanisms that underlie quadriceps strength deficits.  相似文献   

5.
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.  相似文献   

6.
Training can improve muscle strength and endurance in 78- to 84-yr-old men.   总被引:1,自引:0,他引:1  
Nine men, 78-84 yr of age, participated in a dynamometer training program 2-3 times/wk, totaling 25 sessions, using voluntary maximal isometric, concentric, and eccentric right knee-extension actions (30 and 180 degrees/s). Measurements of muscle strength with a Kin-Com dynamometer and simultaneous electromyograms (EMG) were performed of both sides before and after the training period. Muscle biopsies were taken from the right vastus lateralis muscle. The total quadriceps cross-sectional area was measured with computerized tomography. Training led to an increase in maximal torque for concentric (10% at 30 degrees/s) and eccentric (13-19%) actions in the trained leg. The EMG activity increased at maximal eccentric activities. The total cross-sectional quadriceps area of the trained leg increased by 3%, but no changes were recorded in muscle fiber areas in these subjects, who already had large mean fiber areas (5.15 microns 2 x 10(3)). The fatigue index measured from 50 consecutive concentric contractions at 180 degrees/s decreased and the citrate synthase activity increased in all but one subject. The results demonstrate that increased neural activation accompanies an increase in muscle strength at least during eccentric action in already rather active elderly men and that muscle endurance may also be improved with training.  相似文献   

7.
The study was conducted first, to determine the possibility of a dichotomy between circadian rhythm of maximal torque production of the knee extensors of the dominant and non-dominant legs, and second, to determine whether the possible dichotomy could be linked to a change in the downward drive of the central nervous system and/or to phenomena prevailing at the muscular level. The dominant leg was defined as the one with which subjects spontaneously kick a football. Tests were performed at 06:00, 10:00, 14:00, 18:00, and 22:00 h. To distinguish the neural and muscular mechanisms that influence muscle strength, the electromyographic and mechanical muscle responses associated with electrically evoked and/or voluntary contractions of the human quadriceps and semi-tendinosus muscles for each leg were recorded and compared. The main finding was an absence of interaction between time-of-day and dominance effects on the torque associated with maximal voluntary contraction (MVC) of both quadriceps. A significant time-of-day effect on MVC torque of the knee extensors was observed for the dominant and non-dominant legs when the data were collapsed, with highest values occurring at 18:00 h (p < 0.01). From cosinor analysis, a circadian rhythm was documented (p < 0.001) with the peak (acrophase) estimated at 18:18 +/- 00:12 h and amplitude (one-half the peak-to-trough variation) of 3.3 +/- 1.1%. Independent of the leg tested, peripheral mechanisms demonstrated a significant time-of-day effect (p < 0.05) on the peak-torque of the single and doublet stimulations, with maximal levels attained at 18:00 h. The central activation of the quadriceps muscle of each leg remained unchanged during the day. The present results confirmed previous observations that muscle torque changes in a predictable manner during the 24 h period, and that the changes are linked to modifications prevailing at the muscular, rather than the neural, level. The similar rhythmicity observed in this study between the dominant and non-dominant legs provides evidence that it is not essential to test both legs when simple motor tasks are investigated as a function of the time of day.  相似文献   

8.
The aim of this study was to investigate the association between the rate of torque development and maximal motor unit discharge frequency in young and elderly adults as they performed rapid submaximal contractions with the ankle dorsiflexors. Recordings were obtained of the torque exerted by the dorsiflexors during the isometric contractions and the surface and intramuscular electromyograms (EMGs) from the tibialis anterior. The maximal rate of torque development and integrated EMG (percentage of total EMG burst) at peak rate of torque development during fast contractions were lower in elderly than young adults by 48% (P < 0.05) and 16.5% (P < 0.05), respectively. The young adults, but not the elderly adults, exhibited a positive association (r2 = 0.33; P < 0.01) between the integrated EMG computed up to the peak rate of torque development and the maximal rate of torque development achieved during the fast contractions. These age-related changes during fast voluntary contractions were accompanied by a decline (P < 0.001) in motor unit discharge frequency (19, 28, and 34% for first 3 interspike intervals, respectively) and in the percentage of units (45%; P < 0.05) that exhibited double discharges (doublets) at brief intervals (<5 ms). Because aging decreased the maximal rate of torque development of fast voluntary contractions to a greater extent ( approximately 10%) than that of an electrically evoked twitch, collectively the results indicate that the age-related decline in maximal motor unit discharge frequency likely limit, in addition to the slowing of muscle contractile properties, the performance of fast voluntary contractions.  相似文献   

9.
The effects of prolonged cycling on neuromuscular parameters were studied in nine endurance-trained subjects during a 5-h exercise sustained at 55% of the maximal aerobic power. Torque during maximal voluntary contraction (MVC) of the quadriceps muscle decreased progressively throughout the exercise (P < 0.01) and was 18% less at the end of exercise compared with the preexercise value. Peak twitch torque, contraction time, and total area of mechanical response decreased significantly (P < 0.05) after the first hour of exercise. In contrast, changes in M-wave characteristics were significant only after the fourth hour of the exercise. Significant reductions (P < 0.05) in electromyographic activity normalized to the M wave occurred after the first hour for the vastus lateralis muscle but only at the end of the exercise for the vastus medialis muscle. Muscle activation level, assessed by the twitch interpolation technique, decreased by 8% (P < 0.05) at the end of the exercise. The results suggest that the time course is such that the contractile properties are significantly altered after the first hour, whereas excitability and central drive are more impaired toward the latter stages of the 5-h cycling exercise.  相似文献   

10.
We re-examined the relationship between rate of torque development (RTD) and maximal voluntary contractions (MVC) torque, and investigated some possible neuromuscular determinants of early (≤100 ms) and late (≥200 ms) RTD. Seventeen healthy men performed maximal explosive isometric knee extensions at five joint angles, from which MVC torque, RTD at different time intervals (50–250 ms), and early quadriceps EMG activity (EMG50) were evaluated. Quadriceps muscle thickness (MT) was quantified by longitudinal ultrasonography. The relationship between MVC torque, EMG50 and MT against RTD was assessed with Pearson’s and repeated measures correlation coefficients. Moderate-to-strong correlation coefficients were observed between MVC torque and RTD (r = 0.50–0.88, p < 0.001), with stronger relationships for late RTD than for early RTD. Weak-to-strong correlation coefficients were observed amongst RTD and EMG50 (r = 0.37–0.83, p < 0.001), with stronger relationships for early RTD than for late RTD. Only late RTD was significantly correlated with MT, though only moderately (r = 0.50–0.52, p < 0.05). These findings suggest that early and late knee extension RTD are potentially governed by different neuromuscular factors. Neuromuscular activation seems to have a greater influence on early RTD than on late RTD, and vice versa for muscle mass.  相似文献   

11.
This study investigated the effects of dynamic knee extension and flexion fatiguing task on torque and neuromuscular responses in young and older individuals. Eighteen young (8 males; 25.1 ± 3.2 years) and 17 older (8 males; 69.7 ± 3.7 years) volunteered. Following a maximal voluntary isometric contraction test, participants performed a fatiguing task involving 22 maximal isokinetic (concentric) knee extension and flexion contractions at 60°/s, while surface EMG was recorded simultaneously from the knee extensors (KE) and flexors (KF). Fatigue-induced relative torque reductions were similar between age groups for KE (peak torque decrease: 25.15% vs 26.81%); however, KF torque was less affected in older individuals (young vs older peak torque decrease: 27.6% vs 11.5%; p < 0.001) and this was associated with greater increase in hamstring EMG amplitude (p < 0.001) and hamstrings/quadriceps peak torque ratio (p < 0.01). Furthermore, KE was more fatigable than KF only among older individuals (peak torque decrease: 26.8% vs 11.5%; p < 0.001). These findings showed that the age-related fatigue induced by a dynamic task was greater for the KE, with greater age-related decline in KE compared to KF.  相似文献   

12.
Electrical stimulation of femoral nerve modulates voluntary tonic activity o of ipsilateral soleus muscle. Stimulus time-locked inhibitory and facilitatory phases can be distinguished. EMG temporal analysis suggests that early perturbations are correlated with spinal effects of centripetal electrical activity. The inhibitory effects which momentarily abolish voluntary soleus activity are thought to result from quadriceps Ib fibres recruitment. While no heteronymous activity is induced at rest, femoral nerve Ia fibres activation can produce soleus muscle reflex when soleus motor nucleus excitability is increased by voluntary command. Recurrent discharge resulting from soleus reflex response enhances inhibition initially due to quadriceps Ib volley. Secondary effects of isometric quadriceps contraction (and soleus contraction when the femoral stimulus elicits a reflex in this muscle) have their own effects later. These findings suggest that proprioceptive relationships of the two muscular groups are efficient during tonic isometric voluntary command.  相似文献   

13.
Quadriceps muscle weakness and the underlying neuromuscular deficits have been increasingly studied over the last few years in patients with knee osteoarthritis, but the applied methodologies have never been validated for this specific population. The aim of this study was to investigate test–retest reliability of several quadriceps muscle function outcomes in patients with knee osteoarthritis both before and after knee arthroplasty surgery. Ten preoperative and 20 postoperative patients participated in two identical testing sessions. A series of voluntary and/or electrically stimulated contractions of the involved quadriceps with concomitant torque and electromyographic recordings were used to characterize muscle strength, muscle activation and muscle contraction properties. Vastus lateralis morphology (thickness and fascicle pennation angle) was also assessed using ultrasonography. Overall, good reliability scores were observed for the majority of the 13 assessed variables (nine variables with intraclass correlation coefficients >0.75, 12 variables with coefficients of variation <15%). The most reliable testing protocol for patients with knee osteoarthritis would entail the assessment of (1) isometric maximal voluntary torque for evaluating muscle strength, with (2) simultaneous vastus lateralis electromyographic activity for evaluating muscle activation, (3) potentiated (resting) doublet peak torque for evaluating muscle contractility, and (4) vastus lateralis thickness for evaluating muscle size.  相似文献   

14.
The effects were investigated in ten women of intensive heavy resistance strength training lasting for 3 weeks on electromyographic (EMG) activity, muscle cross-sectional area (CSA) and voluntary force production characteristics of leg extensor muscles. Blood samples for the determinations of serum hormones were taken from five of the subjects. Significant increases occurred in the higher force portions of the isometric force-time curve with an increase of 9.7 (SD 8.4)% (P less than 0.01) in maximal peak force. An increase of 15.8 (SD 20.9)% (P less than 0.05) took place also in the maximal neural activation (integrated EMG) of the trained muscles, while an enlargement of 4.6 (SD 7.4)% (P less than 0.05) occurred in the CSA of the quadriceps femoris muscle. Maximal force per muscle CSA increased significantly (P less than 0.05). No statistically significant changes were observed during the training in the mean concentrations of serum testosterone, free testosterone, cortisol and sex hormone binding globulin (SHBG). The individual concentrations of serum testosterone:SHBG ratio correlated with the individual changes obtained during the training in the muscle CSA (r = 0.99; P less than 0.01). The present findings in women indicated that the increases in maximal strength during short-term but intensive strength training were primarily due to the increased voluntary activation of the trained muscles, while muscle hypertrophy remained limited in magnitude. Large interindividual differences in women in serum testosterone concentrations could indicate corresponding differences in muscle hypertrophy and strength development even during a short-term but intensive strength training period.  相似文献   

15.
In this study, we examined whether different exercise modes provoke functional differences in maximal and explosive force-generating capacities and fatigability of the quadriceps femoris (QF). Additionally, the interaction of different functional capacities was studied in competitive athletes. Ten competitive tennis players and 10 endurance athletes participated in the study. Pre-exercise force-generating capacities were determined during maximal voluntary isometric knee extensions (MVC). Fatigability of the QF was studied using sustained isometric contractions with target loads of 20% and 40% of pre-exercise MVC. Postexercise MVCs were conducted 20 seconds, 1 minute, and 3 minutes post task failure. Muscle activation of the QF during the fatiguing exercises and postexercise MVCs was estimated using surface electromyography. Higher explosive force-generating capacities, but no differences in absolute moments, were detected in tennis players compared with endurance athletes. Fatigability of the QF during both fatiguing tasks was approximately the same in both athletic populations. This was indicated by minor group differences in endurance time, postexercise MVC production, and electromyography (EMG)-estimated muscle activation during fatigue. Variability in endurance time was not significantly associated with pre-exercise force-generating capacities in these competitive athletes. In both athletic populations, recovery of MVC was significantly slower after the fatiguing contraction with 20% of MVC compared with that with 40% of MVC. These results may enhance understanding of plasticity of the neuromuscular system and yield interesting information for the optimization of athletic training programs. Explosive strength training might enhance endurance athletes' explosiveness without decreasing muscle fatigue resistance. The exercise profile of competitive tennis is suggested to act as a sufficient trigger to reach high neuromuscular fatigue resistance but may be inadequate to cause significant gains in absolute muscle strength.  相似文献   

16.
The objective of this study was to determine the effect of 2 different warm-up protocols on the neuromuscular system of well-trained middle distance runners. Seven runners performed 2 different warm-up protocols, one of which included slow running, stretching, and bounding and sprinting exercises, while the other consisted of slow running and stretching only. Before and after warm-up, contractile properties of the vastus lateralis and quadriceps femoris were monitored with a single twitch test, maximal torque, and the level of muscle activation during maximal voluntary extension. The 2 types of warm-up protocols showed statistically significant differences in the increase of peak knee extension torque and muscle activation level. After warm-up 1 maximal twitch torque was increased and twitch contraction time (CT) was shortened. Both maximal torque and the level of activation were increased. Parameter changes after warm-up 2 were similar to those after warm-up 1 but not statistically significant. Sprinting and bounding as part of athletes' warm-up improve muscle activation.  相似文献   

17.
After fatigue, motor evoked potentials (MEP) elicited by transcranial magnetic stimulation and cervicomedullary evoked potentials elicited by stimulation of the corticospinal tract are depressed. These reductions in corticomotor excitability and corticospinal transmission are accompanied by voluntary activation failure, but this may not reflect a causal relationship. Our purpose was to determine whether a decline in central excitability contributes to central fatigue. We hypothesized that, if central excitability limits voluntary activation, then a caffeine-induced increase in central excitability should offset voluntary activation failure. In this repeated-measures study, eight men each attended two sessions. Baseline measures of knee extension torque, maximal voluntary activation, peripheral transmission, contractile properties, and central excitability were made before administration of caffeine (6 mg/kg) or placebo. The amplitude of vastus lateralis MEPs elicited during minimal muscle activation provided a measure of central excitability. After a 1-h rest, baseline measures were repeated before, during, and after a fatigue protocol that ended when maximal voluntary torque declined by 35% (Tlim). Increased prefatigue MEP amplitude (P=0.055) and cortically evoked twitch (P<0.05) in the caffeine trial indicate that the drug increased central excitability. In the caffeine trial, increased MEP amplitude was correlated with time to task failure (r=0.74, P<0.05). Caffeine potentiated the MEP early in the fatigue protocol (P<0.05) and offset the 40% decline in placebo MEP (P<0.05) at Tlim. However, this was not associated with enhanced maximal voluntary activation during fatigue or recovery, demonstrating that voluntary activation is not limited by central excitability.  相似文献   

18.
The purpose of this study was to investigate the effect of elastic compression on muscle strength, electromyographic (EMG), and mechanomyographic (MMG) responses of quadriceps femoris during isometric and isokinetic contractions. Twelve participants performed 5 s isometric maximal voluntary contractions (MVC) and 25 consecutive and maximal isokinetic knee extensions at 60 and 300 °/s with no (control, CC), medium (MC), and high (HC) compression applied to the muscle. The EMG and MMG signals were collected simultaneously with muscle isometric and isokinetic strength data. The results showed that the elevated compression did not improve peak torque, peak power, average power, total work, and regression of torque in the isometric and isokinetic contractions. However, the root mean squared value of EMG in both HC and MC significantly decreased compared with CC at 60 and 300 °/s (p < 0.01). Furthermore, the EMG mean power frequency in HC was significantly higher than that in CC at 60 °/s (p < 0.05) whereas no significant compression effect was found in the MMG mean power frequency. These findings provide preliminary evidence suggesting that the increase in local compression pressure may effectively increase muscle efficiency and this might be beneficial in reducing muscle fatigue during concentric isokinetic muscle contractions.  相似文献   

19.
The influence of repetitive dynamic fatiguing contractions on the neuromuscular characteristics of the human triceps surae was investigated in 10 subjects. The load was 50% of the torque produced during a maximal voluntary contraction, and the exercise ended when the ankle range of motion declined to 50% of control. The maximal torque of the triceps surae and the electromyographic (EMG) activities of the soleus and medial gastrocnemius were studied in response to voluntary and electrically induced contractions before and after the fatiguing task and after 5 min of recovery. Reflex activities were also tested by recording the Hoffmann reflex (H reflex) and tendon reflex (T reflex) in the soleus muscle. The results indicated that whereas the maximal voluntary contraction torque, tested in isometric conditions, was reduced to a greater extent (P < 0.05) at 20 degrees of plantar flexion (-33%) compared with the neutral position (-23%) of the ankle joint, the EMG activity of both muscles was not significantly reduced after fatigue. Muscle activation, tested by the interpolated-twitch method or the ratio of the voluntary EMG to the amplitude of the muscle action potential (M-wave), as well as the neuromuscular transmission and sarcolemmal excitation, tested by the M-wave amplitude, did not change significantly after the fatiguing exercise. Although the H and T reflexes declined slightly (10-13%; P < 0.05) after fatigue, these adjustments did not appear to have a direct deleterious effect on muscle activation. In contrast, alterations in the mechanical twitch time course and postactivation potentiation indicated that intracellular Ca(2+)-controlled excitation-contraction coupling processes most likely played a major role in the force decrease after dynamic fatiguing contractions performed for short duration.  相似文献   

20.
The origin of the well-documented discrepancy between maximum voluntary and in vitro tetanic eccentric strength has yet to be fully understood. This study aimed to determine whether surface EMG measurements can be used to reproduce the in vitro tetanic force–velocity relationship from maximum voluntary contractions. Five subjects performed maximal knee extensions over a range of eccentric and concentric velocities on an isovelocity dynamometer whilst EMG from the quadriceps were recorded. Maximum voluntary (MVC) force–length–velocity data were estimated from the dynamometer measurements and a muscle model. Normalised amplitude–length–velocity data were obtained from the EMG signals. Dividing the MVC forces by the normalised amplitudes generated EMG corrected force–length–velocity data. The goodness of fit of the in vitro tetanic force–velocity function to the MVC and EMG corrected forces was assessed. Based on a number of comparative scores the in vitro tetanic force–velocity function provided a significantly better fit to the EMG corrected forces compared to the MVC forces (p?0.05), Furthermore, the EMG corrected forces generated realistic in vitro tetanic force–velocity profiles. A 58±19% increase in maximum eccentric strength is theoretically achievable through eliminating neural factors. In conclusion, EMG amplitude can be used to estimate in vitro tetanic forces from maximal in vivo force measurements, supporting neural factors as the major contributor to the difference between in vitro and in vivo maximal force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号