首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
The purposes of this study were threefold: (1) to compare the power output related patterns of absolute and normalized MMG amplitude and MPF responses for proximal and distal accelerometer placements on the vastus lateralis (VL) muscle during incremental cycle ergometry; (2) to examine the influence of accelerometer placements on mean absolute MMG amplitude and MPF values; and (3) to determine the effects of normalization on mean MMG amplitude and MPF values from proximal and distal accelerometer placements. Fifteen adults (10 men and 5 women; mean ± SD age = 23.9 ± 3.1 years) performed incremental cycle ergometry tests to exhaustion. Two accelerometers were placed proximal and distal on the VL muscle. Paired t-tests indicated that absolute MMG amplitude values for the proximal accelerometer were greater (p < 0.05) than the distal accelerometer at all power outputs. The normalized MMG amplitude also had greater values for the proximal accelerometer at all power outputs, except 50 W. There were no differences, however, between proximal and distal accelerometers for absolute MMG MPF, except at 75 W, and normalization eliminated this difference. Twenty-seven percent of the subjects exhibited different power output related patterns of responses between accelerometer placements for MMG amplitude and 47% exhibited different patterns for MPF. These findings indicated that normalization did not eliminate the influence of accelerometer placement on MMG amplitude and highlighted the importance of standardizing accelerometer placements to compare MMG values during cycle ergometry.  相似文献   

2.
IntroductionThe purpose of this study was to examine possible correlations between skinfold thicknesses and the a terms from the log-transformed electromyographic (EMGRMS) and mechanomyographic amplitude (MMGRMS)-force relationships, EMG M-Waves, and MMG gross lateral movements (GLM).MethodsForty healthy subjects performed a 6-s isometric ramp contraction from 5% to 85% of their maximal voluntary contraction with EMG and MMG sensors placed on the vastus lateralis (VL) and rectus femoris (RF). A single electrical stimulus was applied to the femoral nerve to record the EMG M-waves and MMG GLMs. Skinfold thickness was assessed at the site of each electrode. Pearson’s product correlation coefficients were calculated comparing skinfold thicknesses with the a terms from the log-transformed EMGRMS-and MMGRMS-force relationships, EMG M-waves, and MMG GLMs.ResultsThere were no significant cor1relations (p > 0.05) between the a terms and skinfold thicknesses for the RF and VL from the EMGRMS and MMGRMS-force relationships. However, there were significant correlations (p < 0.05) between skinfold thicknesses and the EMG M-waves and MMG GLMs for the RF (r = −0.521, −0.376) and VL (r = −0.479, −0.484).DiscussionRelationships were only present between skinfold thickness and the amplitudes of the EMG and MMG signals during the non-voluntary muscle actions.  相似文献   

3.
The purpose of this study was to examine the influence of interelectrode distance (IED) over the estimated innervation zone (IZ) for the vastus lateralis muscle and normalization on the torque-related patterns of responses for electromyographic (EMG) amplitude and mean power frequency (MPF) during concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the leg extensors. Eight men performed submaximal to maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the dominant leg extensors. Surface EMG signals were recorded simultaneously with two bipolar electrode arrangements in single differential configuration (20 and 40 mm IEDs) placed over the estimated IZ for the vastus lateralis muscle and a third electrode arrangement in single differential configuration (20 mm IED) placed distal to the estimated IZ. The results indicated that there were only a few (six of 90 statistical comparisons) significant (p < 0.05) mean differences among the three electrode arrangements for absolute EMG amplitude. There were no mean differences among the three electrode arrangements for absolute or normalized EMG MPF values or normalized EMG amplitude for the three types of muscle actions. Thus, it may be possible to reduce the potential influence of the IZ on amplitude and spectral parameters of the EMG signal through normalization.  相似文献   

4.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

5.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

6.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

7.
This study examined correlations between type I percent myosin heavy chain isoform content (%MHC) and mechanomyographic amplitude (MMGRMS) during isometric muscle actions. Fifteen (age = 21.63 ± 2.39) participants performed 40% and 70% maximal voluntary contractions (MVC) of the leg extensors that included increasing, steady force, and decreasing segments. Muscle biopsies were collected and MMG was recorded from the vastus lateralis. Linear regressions were fit to the natural-log transformed MMGRMS–force relationships (increasing and decreasing segments) and MMGRMS was selected at the targeted force level during the steady force segment. Correlations were calculated among type I%MHC and the b (slopes) terms from the MMGRMS–force relationships and MMGRMS at the targeted force. For the 40% MVC, correlations were significant (P < 0.02) between type I%MHC and the b terms from the increasing (r = −0.804) and decreasing (r = −0.568) segments, and MMGRMS from the steady force segment (r = −0.606). Type I%MHC was only correlated with MMGRMS during the steady force segment (P = 0.044, r = −0.525) during the 70% MVC. Higher type I%MHC reduced acceleration in MMGRMS (b terms) during the 40% MVC and the amplitude during the steady force segments. The surface MMG signal recorded during a moderate intensity contraction provided insight on the contractile properties of the VL in vivo.  相似文献   

8.
This work aimed to characterise the whole human muscle input/output law during electrical stimulation with triangular varying frequency and amplitude trains through combined analysis of torque, mechanomyogram (MMG) and electromyogram (EMG).The tibialis anterior (TA) of ten subjects (age 23–35 years) was investigated during static contraction obtained through neuromuscular electrical stimulation. After potentiation, TA underwent two 15 s stimulation patterns: (a) frequency triangle (FT): 2 > 35 > 2 Hz at Vmax (amplitude providing full motor unit recruitment); (b) amplitude triangle (AT): Vmin > Vmax > Vmin (Vmin providing TA least mechanical response) at 35 Hz. 2 > 35 Hz or Vmin > Vmax as well as 35 > 2 Hz or Vmax > Vmin were defined as up-going ramp (UGR) and down-going ramp (DGR), respectively. TA torque, MMG and EMG were detected by a load cell, an optical laser distance sensor and a probe with two silver bar electrodes, respectively. For both FT and AT, only the two mechanical signals resulted always larger in DGR than in UGR, during AT extra-torque and extra-MMG were present even in the first 1/3 of the amplitude range where EMG data presented no significant differences between DGR and UGR.Our data suggest that extra-torque and extra-displacement are evident for both FT and AT, being mainly attributed to an intrinsic muscle property.  相似文献   

9.
Physiological tremor is an inherent feature of the motor system that is influenced by intrinsic (neuromuscular) and/or extrinsic (task) factors. Given that tremor must be accounted for during the performance of many fine motor skills; there is a requirement to clarify how different factors interact to influence tremor. This study was designed to assess the impact localized fatigue of a single arm and stance position had on bilateral physiological tremor and forearm muscle activity. Results demonstrated that unilateral fatigue produced bilateral increases in tremor and wrist extensor activity. For example, fatigue resulted in increases in extensor activity across both exercised (increased 8–10% MVC) and the non-exercised arm (increased 3–7% MVC). The impact of fatigue was not restricted to changes in tremor/EMG amplitude, with altered hand–finger coupling observed within both arms. Within the exercised arm, cross-correlation values decreased (pre-exercise r = 0.62–0.64; post-exercise r = 0.37–0.43) while coupling increased within the non-exercised arm (pre-exercise r = 0.51–0.55; post-exercise r = 0.62–0.67). While standing posture alone had no significant impact on tremor/EMG dynamics, the tremor and muscle increases seen with fatigue were more pronounced when standing. Together these results demonstrate that the combination of postural and fatigue factors can influence both tremor/EMG outputs and the underlying coordinative coupling dynamics.  相似文献   

10.
Changes in electromyographic (EMG) parameters are used to evaluate timing, amplitude, and fatigue of muscle actions during movement. Little published data describe the reliability and precision of multiple EMG parameters, how these parameters compare to one another, and how these parameters vary between muscles. The purpose of this study was to determine the reliability and precision of four EMG parameters recorded from the legs, torso, and arm muscles during running. Fifteen well-trained male runners performed moderate-intensity treadmill running while EMG data were collected from thirteen muscles. Integrated EMG (iEMG), root mean square EMG (RMS), maximum M-wave, and median power frequency (MPF) were calculated for 25 consecutive strides. Intra-class correlation coefficients (ICC) and standard error of measurement (SEM) for each parameter were calculated for each muscle. Seven muscles displayed good reliability (ICC > 0.80) for all parameters studied. MPF was the most reliable variable, with 12 muscles having ICC > 0.80 and <6% normalized SEM. Reliability and precision differed between muscles of similar function and anatomic region. These data emphasize the need for researchers and clinicians to have reliability and precision measures for all parameters of each muscle, and demonstrates that generalizations must be used cautiously when interpreting EMG data collected during running.  相似文献   

11.
Scope: Daily bilateral electromyography (EMG) recordings reveal muscle activation patterns implicated in asymmetric Parkinson’s disease (PD)-related functional decline. Also, daily EMG recordings reveal sex-differences in muscle activity that give rise to unique PD presentation in males and females. Purpose: Quantify handgrip strength and daily muscle quiescence through analysis of gaps in the EMG signal in males and females with PD. Bilateral daily EMG was recorded and normalized to maximal voluntary exertions (MVE). EMG gap was defined as <1% amplitude of MVE for >0.1 s and characterized as number, duration and time occupied by gaps. A dynamometer evaluated maximal grip-strength. Three-way repeated measures ANOVA examined differences in gap characteristics and strength. Gap duration was shorter (p = 0.04) and occupied less time (p = 0.02) in PD than controls. Females had fewer gaps with shorter duration (p = 0.004), occupying less time (p = 0.004) compared with males. Gaps were fewer (p = 0.04) and occupied less time (p = 0.01) on more-affected than less-affected side. PD was weaker than controls (p = 0.04), females were weaker than males (p = 0.00), and the more-affected PD side was weaker than less-affected (p = 0.04). Conclusions: Quantification of muscle quiescence through gaps in the EMG signal recorded during daily life provides insight into mechanisms underlying differential change in functional performance in males and females with PD.  相似文献   

12.
PurposeVibratory stimuli enhance muscle activity and may be used for rehabilitation and performance enhancement. Efficacy of vibration varies with the frequency of stimulation, but the optimal frequency is unclear. The purpose of this study was to examine the effects of 30 Hz and 60 Hz local muscle vibration (LMV) on quadriceps function.MethodsTwenty healthy volunteers (age = 20.4 ± 1.4 years, mass = 68.1 ± 11.0 kg, height = 170.1 ± 8.8 cm, males = 9) participated. Isometric knee extensor peak torque (PT), rate of torque development (RTD), and electromyography (EMG) of the quadriceps were assessed followed by one of the three LMV treatments (30 Hz, 60 Hz, control) applied under voluntary contraction, and again immediately, 5, 15, and 30 min post-treatment in three counterbalanced sessions. Dependent variables were analyzed using condition by time repeated-measures ANOVA.ResultsThe condition × time interaction was significant for EMG amplitude (p = 0.001), but not for PT (p = 0.324) or RTD (p = 0.425). The increase in EMG amplitude following 30 Hz LMV was significantly greater than 60 Hz LMV and control.ConclusionsThese findings suggest that 30 Hz LMV may elicit an improvement in quadriceps activation and could be used to treat quadriceps dysfunction resulting from knee pathologies.  相似文献   

13.
Both contraction type and ageing may cause changes in H-reflex excitability. H reflex is partly affected by presynaptic inhibition that may also be an important factor in the control of MU activation. The purpose of the study was to examine age related changes in H-reflex excitability and motor unit activation patterns in dynamic and in isometric contractions. Ten younger (YOUNG) and 13 elderly (OLD) males performed isometric (ISO), concentric (CON) and eccentric (ECC) plantarflexions with submaximal activation levels (20% and 40% of maximal soleus surface EMG). Intramuscular EMG data was analyzed utilizing an intramuscular spike amplitude frequency histogram method. Average H/M ratio was always lowest in ECC (n.s.). Mean spike amplitude increased with activation level (P < .05), whereas no significant differences were found between contraction types. Both H-reflex excitability, which may be due to an increase in presynaptic inhibition, and mean spike frequency were higher in YOUNG compared to OLD. In OLD the mean spike frequency was significantly smaller in CON compared to ISO. Lack of difference in mean spike amplitude and frequency across contraction types in YOUNG would imply a similar activation strategy, whereas the lower frequency in dynamic contractions in OLD could be related to synergist muscle behavior.  相似文献   

14.
The purpose of this study was to compare isokinetic peak torque and the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG), amplitude (AMP) and mean power frequency (MPF) for bilateral (BL) versus unilateral (UL), maximal, isokinetic leg extensions. Eleven recreationally trained women (Mean ± SD: age 22.9 ± 0.9 yrs; body mass 60.5 ± 10.1 kg; height 167.2 ± 6.4 cm) performed 50 maximal, BL and UL isokinetic leg extensions at 60° s−1 on separate days. Electromyographic and MMG signals from the vastus lateralis of the nondominant leg were recorded. Five separate 2 (Condition [BL and UL]) × 10 (Repetitions [5–50]) repeated measures ANOVAs were performed to examine normalized EMG AMP, EMG MPF, MMG AMP, MMG MPF, and isokinetic torque. The results indicated no significant interactions or main effects for EMG AMP and MMG AMP. There were significant interactions for normalized isokinetic peak torque (p < 0.001, η2p = 0.493) and MMG MPF (p = 0.003, η2p = 0.234). For EMG MPF, there was no significant interaction, but significant main effects for Condition (p = 0.003, η2p = 0.607) and Repetitions (p < 0.001, η2p = 0.805). The current findings demonstrated greater performance fatigability for UL than BL leg extensions. Both modalities exhibited similar patterns of neuromuscular responses that were consistent with the Muscular Wisdom hypothesis.  相似文献   

15.
This study investigated neuromuscular fatigue following low-intensity resistance exercise with vascular restriction (VR) and without vascular restriction (control, CON). Fourteen males participated in two experimental trials (VR and CON) each separated by 48 h. Each participant performed two isometric maximum voluntary contractions (MVCs) before and after five sets of 20 dynamic constant external resistance leg extension exercises (DCER-EX) at 20% of one-repetition maximum (1-RM). The participants were asked to lift (1.5 s) and lower (1.5 s) the load at a constant velocity. Surface electromyography (EMG) was recorded from the vastus lateralis during MVC and DCER-EX. Twitch interpolation was used to assess the percent of maximal voluntary activation (%VA) during the MVC. During performing five sets of 20 DCER-EX, the increases (p < 0.05) in EMG amplitude and decreases (p < 0.05) in EMG mean power frequency were similar for both VR and CON. However, there were significant differences between VR and CON for MVC force, %VA, and potentiated twitch force and significant interactions for EMG amplitude. VR decreased MVC force, %VA, potentiated twitch force, and EMG amplitude more than CON. Our findings suggest that the VR-induced fatigue may have been due to a combination of peripheral (decreases in potentiated twitch) and central (decreases in %VA and EMG amplitude) fatigue.  相似文献   

16.
It was hypothesized that concentric and eccentric isokinetic muscle actions should yield detectable differences in the mechanomyograms, which may reflect properties of the contraction and relaxation phases of the muscles. A paired pattern classification technique was adapted to determine whether wavelet transformed mechanomyograms from the three superficial quadriceps muscles were different during maximal concentric and eccentric isokinetic muscle actions. Mechanomyograms for this study were recorded from eleven healthy men (mean ± SD age = 20.1 ± 1.1 yrs) who performed maximal concentric and eccentric isokinetic muscle actions of the dominant leg extensors at a velocity of 30° s?1. The results indicated that the paired pattern classification accurately classified the MMG intensity patterns in approximately 94% of the cases as being from a concentric or eccentric movement. Thus, it can be concluded that the differences in the intensity patterns recorded from concentric and eccentric muscle actions were significant. These findings indicated that the combined MMG wavelet analysis and pattern classification techniques could potentially be useful in situations where muscle activity during concentric muscle actions must be distinguished from that during eccentric muscle actions.  相似文献   

17.
This study examined the validity of the twitch interpolation technique for evaluating side-to-side asymmetries in quadriceps neuromuscular function. Fifty-six subjects with a wide range of asymmetries (19 healthy, 24 with unilateral and 13 with bilateral anterior cruciate ligament reconstruction) took part in the study. Supramaximal electrical paired stimuli were delivered to the quadriceps muscle during and immediately after a maximal voluntary contraction (MVC) of the knee extensors (twitch interpolation technique). MVC torque, voluntary activation and resting doublet-evoked torque were measured separately for the two sides, and percent side-to-side asymmetries were calculated for each parameter. MVC torque asymmetry was plotted against voluntary activation asymmetry and doublet-evoked torque asymmetry, and a multiple regression analysis was also conducted. Significant positive correlations were observed between MVC torque asymmetry and both voluntary activation asymmetry (r = 0.40; p = 0.002) and doublet-evoked torque asymmetry (r = 0.53; p < 0.001), and their relative contribution to MVC torque asymmetry was comparable (r = 0.64; p < 0.001). These results establish the validity of the twitch interpolation technique for the assessment of neuromuscular asymmetries. This methodology could provide useful insights into the contribution of some neural and muscular mechanisms that underlie quadriceps strength deficits.  相似文献   

18.
BackgroundElectromyography (EMG) is commonly used to assess muscle activity. Although previous studies have had moderate success in predicting individual intramuscular muscle activity from surface electrodes, extensive data does not exist for the rotator cuff. This study aimed to determine how reliably surface electrodes represent rotator cuff activity during 20 maximal exertions.MethodsFive channels of EMG were recorded on the following rotator cuff muscles: supraspinatus and infraspinatus intramuscular and surface recordings, and teres minor intramuscular recordings. An additional 3 surface electrodes were placed over the upper and middle trapezius and posterior deltoid. Subjects performed ramped maximal voluntary contractions (MVCs) for each muscle, followed by 20 isometric maximal exertions. Linear least squares best fit regressions (unconstrained and constrained with zero-intercept) were used to compare: intramuscular and surface supraspinatus and infraspinatus signals, respectively, and intramuscular teres minor and surface infraspinatus signals.FindingsRelationships existed between wire and surface electrode measurements for all rotator cuff muscles: supraspinatus (r2 = 0.73); teres minor (r2 = 0.61); infraspinatus (r2 = 0.40), however prediction equations indicated large overestimations and offsets.InterpretationWhen appropriate multiplicative coefficients are considered, surface supraspinatus and infraspinatus electrodes may be used to estimate intramuscular supraspinatus and teres minor activations, respectively, in maximal exertions similar to those tested. However, until these relationships are better defined in other postures, intensities and exertion types, the use of surface electrodes to estimate indwelling rotator cuff activity is cautioned against.  相似文献   

19.
《Small Ruminant Research》2009,85(1-3):41-46
Data on linear body measurements (LBM) of 403 sheep collected in three areas of KwaZulu-Natal were utilized to develop a prediction equation for live body weight of Zulu sheep. Data were collected on live weight (LW), heart girth (HG), wither height (WH) and scrotum circumference (SC) on sheep of all ages. The age of sheep was estimated by dentition. The analysis of variance showed that age and sex were important factors contributing to variation in LW of Zulu sheep. Phenotypic correlation coefficients and regression equations of LW on HG, WH and SC were computed within different age groups (milk set of teeth, one pair, two pairs and the three and four pairs of incisors). Low correlation coefficients (r = 0.21–0.48) between LW, HG and WH were found among the pregnant ewes. The relationship between LBM and LW was stronger (r = 0.66–0.86) for males than among females (r = 0.42–0.75). The cubic polynomial of HG was the best fit (R2 = 0.76) for the live weight prediction of young sheep with milk set of teeth. The combination of HG and WH produced the best fit for the two tooth and above males and non-pregnant females. The LW prediction equations for pregnant females were not reliable (R2 = 0.05–0.26). The SC was more precise (R2 = 0.61–0.80) when estimating the live weight of young males (<15–22-month-old) than of the older rams (R2 = 0.23–0.56). It was concluded that LW of Zulu sheep can be reasonably estimated using the HG and WH. A table could be constructed for the farmers to estimate the LW of their animals.  相似文献   

20.
The purpose of this investigation was to determine the mechanomyography (MMG) and electromyography (EMG) amplitude and mean power frequency (MPF) vs. eccentric isokinetic torque relationships for the biceps brachii muscle. Nine adults (mean +/- SD age = 23.1 +/- 2.9 years) performed submaximal to maximal eccentric isokinetic muscle actions of the dominant forearm flexors. After determination of isokinetic peak torque (PT), the subjects randomly performed submaximal step muscle actions in 10% increments from 10 to 90% PT. Polynomial regression analyses indicated that the MMG amplitude vs. eccentric isokinetic torque relationship was best fit with a quadratic model (R(2) = 0.951), where MMG amplitude increased from 10 to 60% PT and then plateaued from 60 to 100% PT. There were linear increases in MMG MPF (r(2) = 0.751) and EMG amplitude (r(2) = 0.988) with increases in eccentric isokinetic torque, but there was no significant change in EMG MPF from 10 to 100% PT. The results suggested that for the biceps brachii, eccentric isokinetic torque was increased to approximately 60% PT through concurrent modulation of the number of active motor units and their firing rates, whereas additional torque above 60% PT was produced only by increases in firing rates. These findings contribute to current knowledge of motor-control strategies during eccentric isokinetic muscle actions and could be useful in the design of training programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号