首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

2.
The purpose of this study was to examine the influence of interelectrode distance (IED) over the estimated innervation zone (IZ) for the vastus lateralis muscle and normalization on the torque-related patterns of responses for electromyographic (EMG) amplitude and mean power frequency (MPF) during concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the leg extensors. Eight men performed submaximal to maximal concentric isokinetic, eccentric isokinetic, and isometric muscle actions of the dominant leg extensors. Surface EMG signals were recorded simultaneously with two bipolar electrode arrangements in single differential configuration (20 and 40 mm IEDs) placed over the estimated IZ for the vastus lateralis muscle and a third electrode arrangement in single differential configuration (20 mm IED) placed distal to the estimated IZ. The results indicated that there were only a few (six of 90 statistical comparisons) significant (p < 0.05) mean differences among the three electrode arrangements for absolute EMG amplitude. There were no mean differences among the three electrode arrangements for absolute or normalized EMG MPF values or normalized EMG amplitude for the three types of muscle actions. Thus, it may be possible to reduce the potential influence of the IZ on amplitude and spectral parameters of the EMG signal through normalization.  相似文献   

3.
Normalization of electromyographic (EMG) amplitudes is necessary in the study of human motion. However, there is a lack of agreement on the most reliable and appropriate normalization method. This study evaluated the reliability of single leg stance (SLS) and maximal voluntary isometric contraction (MVIC) normalization methods and the relationship between these measures for the gluteus maximus (GMax), gluteus medius (GMed), rectus femoris (RF), vastus lateralis (VL), hip adductor group (ADD), and biceps femoris (BF). Surface EMG was recorded in 20 subjects during three 5 s trials of SLS and MVIC. SLS and MVIC methods both demonstrated good-to-excellent reliability in all muscles (ICCs > 0.80). Intrasubject coefficients of variation were lower for the MVIC method (9–36%) than for the SLS method (20–59%). EMG amplitudes during MVIC and SLS were significantly correlated for all muscles (Pearson r’s = 0.604–0.905, p < 0.005) except GMax (r = 0.250, p = 0.288). Use of SLS normalization for the RF, VL, and BF is not recommended due to a lack of measurement precision. However, this method is justified in the GMax, GMed, and ADD and may provide a better representation of coordinated muscle function during a functional task.  相似文献   

4.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

5.
Surface electromyography (EMG) is widely used to evaluate forearm muscle function and predict hand grip forces; however, there is a lack of literature on its intra-session and inter-day reliability. The aim of this study was to determine reliability of surface EMG of finger and wrist flexor muscles across varying grip forces. Surface EMG was measured from six forearm flexor muscles of 23 healthy adults. Eleven of these subjects undertook inter-day test–retest. Six repetitions of five randomized isometric grip forces between 0% and 80% of maximum force (MVC) were recorded and normalized to MVC. Intra- and inter-day reliability were calculated through the intraclass correlation coefficient (ICC) and standard error of measurement (SEM).Normalized EMG produced excellent intra-session ICC of 0.90 when repeated measurements were averaged. Intra-session SEM was low at low grip forces, however, corresponding normalized SEM was high (23–45%) due to the small magnitude of EMG signals. This may limit the ability to evaluate finer forearm muscle function and hand grip forces in daily tasks. Combining EMG of functionally related muscles improved intra-session SEM, improving within-subject reliability without taking multiple measurements. Removing and replacing electrodes inter-day produced poor ICC (ICC < 0.50) but did not substantially affect SEM.  相似文献   

6.
Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise.Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output = 200 ± 12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA).No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles.Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.  相似文献   

7.
The aim of this study was to determine the inter- and intra-session reliability of the temporal and magnitude components of activity in eight muscles considered important for the leg cycling action. On three separate occasions, 13 male non-cyclists and 11 male cyclists completed 6 min of cycling at 135, 150, and 165 W. Cyclists completed two additional 6-min bouts at 215 and 265 W. Surface electromyography was used to record the electrical activity of tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, vastus medialis, vastus lateralis, rectus femoris, and gluteus maximus. There were no differences (P > 0.05) in the muscle activity onset and offset or in the iEMG of any muscles between visits. There were also no differences (P > 0.05) between cyclists and non-cyclists in the variability of these parameters. Overall, standard error of measurement (SEM) and intra-class correlation analyses suggested similar reliability of both inter- and intra-session muscle activity onset and offset. The SEM of activity onset in tibialis anterior and activity offset in soleus, gastrocnemius lateralis and rectus femoris was markedly higher than in the other muscles. Intra-session iEMG was reliable (coefficient of variation (CV) = 5.3–13.5%, across all muscles), though a CV range of 15.8–43.1% identified low inter-session iEMG reliability. During submaximal cycling, the temporal components of muscle activity exhibit similar intra- and inter-session reliability. The magnitude component of muscle activity is reliable on an intra-session basis, but not on an inter-session basis.  相似文献   

8.
In this study, we aimed to compare the intrarater reliability and validity of muscle thickness measured using ultrasonography (US) and muscle activity via electromyography (EMG) during manual muscle testing (MMT) of the external oblique (EO) and lumbar multifidus (MF) muscles. The study subjects were 30 healthy individuals who underwent MMT at different grades. EMG was used to measure the muscle activity in terms of ratio to maximum voluntary contraction (MVC) and root mean square (RMS) metrics. US was used to measure the raw muscle thickness, the ratio of muscle thickness at MVC, and the ratio of muscle thickness at rest. One examiner performed measurements on each subject in 3 trials. The intrarater reliabilities of the % MVC RMS and raw RMS metrics for EMG and the % MVC thickness metrics for US were excellent (ICC = 0.81–0.98). There was a significant difference between all the grades measured using the % MVC thickness metric (p < 0.01). Further, this % MVC thickness metric of US showed a significantly higher correlation with the EMG measurement methods than with the others (r = 0.51–0.61). Our findings suggest that the % MVC thickness determined by US was the most sensitive of all methods for assessing the MMT grade.  相似文献   

9.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

10.
We evaluated possible methods of normalisation for EMG measured during cycling. The MVC method, Sprint method and 70% Peak Power Output Method were investigated and their repeatability, reliability and sensitivity to change in workload were compared.Thirteen cyclists performed the same experimental protocol on three separate occasions. Each day, subjects firstly performed MVCs, followed by a 10 s maximal sprint on a cycle ergometer. Subjects then performed a Peak Power Output (PPO) test until exhaustion. After which they cycled at 70% of PPO for 5 min at 90 rpm. Results indicated that normalising EMG data to 70% PPO is more repeatable, the intra-class correlation (ICC) of 70% PPO (0.87) was significantly higher than for MVC (0.66) (p = 0.03) and 10 s sprint (0.65) (p = 0.04). The 70% PPO method also demonstrated the least intra-subject variability for five out of the six muscles. The Sprint and 70% PPO method highlighted greater sensitivity to changes in muscle activity than the MVC method. The MVC method showed the highest intra-subject variability for most muscles except VM.The data suggests that normalising EMG to dynamic methods is the most appropriate for examining muscle activity during cycling over different days and for once-off measurements.  相似文献   

11.
Functional shoulder assessments require the use of objective and reliable standardized outcome measures. Therefore, the aim of this study was to examine the between-day reliability of a hand-held dynamometer when measuring muscle strength during flexion, abduction, and internal and external rotation as well as surface electromyography (EMG) when measuring muscle activity from m. trapezius superior and deltoideus anterior. Twenty-four healthy subjects participated and performed four isometric contractions measured with a hand-held dynamometer and EMG. Both relative and absolute reliability were calculated based on the mean of the last three of the four repetitions. EMG amplitude was assessed calculating both absolute and normalized root-mean-square (RMS) values. The reliability of the hand-held dynamometer was high (LOA = 3.2–7.6% and ICC = 0.89–0.98). The absolute reliability for EMG showed similar results for absolute RMS values (LOA = 20.0–68.4%) and normalized RMS values (LOA = 42.4–66.5%). However, the results concerning the relative reliability showed higher ICC for absolute RMS values (ICC = 0.82–0.92) compared with normalized values (ICC = 0.57–0.72).The outcome measurements of this study with healthy subjects were found reliable and, therefore, have the potential to detect changes in muscle strength and muscle activity.  相似文献   

12.
Geometric artifact may alter the amplitude and frequency of the electromyography (EMG) signal. Artifacts include the changing geometry of muscles with respect to electrodes and potential crosstalk from adjacent muscles. This study addresses: (1) the geometrical relationships between common electrode placement sites for six forearm muscles, (2) the geometrical change of forearm muscles in pronation and supination, and (3) the relationships between EMG cross-correlation and muscle geometry. EMG and ultrasonography images were recorded during pronation, supination, and neutral forearm postures while exerting 20% maximum grip strength. Proportions of anatomical structures were then calculated for 15 mm, 20 mm, and 25 mm radial pick-up zone distances, representing greater than 90% of observed myoelectrical signal energy. We found that guidelines for electrode placements were supported and no single posture maximized the proportion of the target muscle detected. Secondly, other muscles were present in the most conservative 15 mm radius pick up zone; it is unlikely that surface EMG can completely differentiate between forearm muscle activities. Thirdly, forearm orientation did not appear to be an important factor in changing the geometrical relationships between surface electrodes and the muscles studied, and fourthly, certain muscles (e.g., FDS) may be more vulnerable to EMG crosstalk.  相似文献   

13.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

14.
Alterations in scapular muscle activity, including excess activation of the upper trapezius (UT) and onset latencies of the lower trapezius (LT) and serratus anterior (SA) muscles, are associated with abnormal scapular motion and shoulder impingement. Limited information exists on the reliability of neuromuscular activity to demonstrate the efficacy of interventions. The purpose of this study was to characterize the reproducibility of scapular muscle activity (mean activity, relative onset timing) over time and establish the minimal detectable change (MDC). Surface electromyography (sEMG) of the UT, LT, SA and anterior deltoid (AD) muscles in 16 adults were captured during an overhead lifting task in two sessions, one-week apart. sEMG data were also normalized to maximum isometric contraction and the relative onset and mean muscle activity during concentric and eccentric phases of the scapular muscles were calculated. Additionally, reliability of the absolute sEMG data during the lifting task and MVIC was evaluated. Both intrasession and intersession reliability of normalized and absolute mean scapular muscle activity, assessed with intraclass correlation coefficients (ICC), ranged from 0.62 to 0.99; MDC values were between 1.3% and 11.7% MVIC and 24 to 135 mV absolute sEMG. Reliability of sEMG during MVIC was ICC = 0.82–0.99, with the exception of intersession upper trapezius reliability (ICC = 0.36). Within session reliability of muscle onset times was ICC = 0.88–0.97, but between session reliability was lower with ICC = 0.43–0.73; MDC were between 39 and 237 ms. Small changes in scapular neuromuscular mean activity (>11.7% MVIC) can be interpreted as meaningful change, while change in muscle onset timing in light of specific processing parameters used in this study is more variable.  相似文献   

15.
Prior to implementing a normalisation method, the standardisation and reliability of the method needs to be examined. This investigation aimed to assess the reliability of EMG amplitudes and test outputs from proposed normalisation methods for the triceps surae. Sixteen participants completed isometric (maximum and sub-maximum); isokinetic (1.05 rad/s, 1.31 rad/s and 1.83 rad/s) squat jump and 20 m sprint conditions, on 3 separate occasions over 1 week. The EMG data was collected from the medial and lateral gastrocnemius (MG and LG) and soleus (SOL). Log transformed typical error measurements (TEMCV%) assessed EMG signal and test output reliability across the three sessions. Only the squat jump provided acceptable EMG reliability for all muscles both between days (SOL: 13%; MG: 14.5%; LG: 11.8%) and between weeks (SOL: 14.5%; MG: 12.9%; LG: 8.9%), with the sprint only showing poor reliability in the LG between days (16.3%). Acceptable reliability for the isometric and isokinetic conditions were muscle and re-test period dependant. Reliable output was found for the squat jump (4.1% and 3.6%), sprint (0.8% and 0.6%) and 1RM plantar flexion test (2.8% and 3.5%) between days and weeks, respectively. Isokinetic plantar flexion displayed poor reliability at all velocities between days and weeks. It was concluded that the squat jump provides a standardised and reproducible reference EMG value for the triceps surae for use as a normalisation method.  相似文献   

16.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

17.
No electromyography (EMG) responses data exist of children exposed to dynamic impacts similar to automotive crashes, thereby, limiting active musculature representation in computational occupant biomechanics models. This study measured the surface EMG responses of three neck, one torso and one lower extremity muscles during low-speed frontal impact sled tests (average maximum acceleration: 3.8 g; rise time: 58.2 ms) performed on seated, restrained pediatric (n = 11, 8–14 years) and young adult (n = 9, 18–30 years) male subjects. The timing and magnitude of the EMG responses were compared between the two age groups. Two normalization techniques were separately implemented and evaluated: maximum voluntary EMG (MVE) and neck cross-sectional area (CSA). The MVE-normalized EMG data indicated a positive correlation with age in the rectus femoris for EMG latency; there was no correlation with age for peak EMG amplitudes for the evaluated muscles. The cervical paraspinous exhibited shorter latencies compared with the other muscles (2–143 ms). Overall, the erector spinae and rectus femoris peak amplitudes were relatively small. Neck CSA-normalized peak EMG amplitudes negatively correlated with age for the cervical paraspinous and sternocleidomastoid. These data can be useful to incorporate active musculature in computational models, though it may not need to be age-specific in low-speed loading environments.  相似文献   

18.
This study investigated (a) the feasibility and repeatability of intramuscular fine-wire electromyographic (fEMG) recordings from leg muscles during the repetitive, high-velocity cycling movement, (b) the influence of amplitude normalization technique on repeatability and statistical sensitivity, (c) the influence of test-retest interval duration on repeatability, and (d) differences between fEMG and surface EMG (sEMG) recordings of cycling. EMG activity of leg muscles was recorded using surface and fine-wire electrodes during one (n = 12, to investigate statistical sensitivity and compare sEMG and fEMG) or two sessions (T1 and T2, 5–20 days apart, n = 10, to investigate repeatability). fEMG recordings were feasible and there was high repeatability of fEMG recordings normalised to maximum measured EMG amplitude (MAX); mean coefficients of multiple correlation (CMC) ranged from .83 ± .13 to .88 ± .07. Data normalised to maximal (MVC) or submaximal contractions (sMVC) were less repeatable (p < .01). Statistical sensitivity was also greatest for data normalised to MAX (p < .01). Repeatability of fEMG increased with greater test-retest intervals (p < .01). The global pattern of muscle recruitment was consistent between sEMG and fEMG but sEMG recordings were characterized by additional myoelectric content. These findings support and guide the use of fEMG techniques to investigate leg muscle recruitment during cycling.  相似文献   

19.
Purpose: To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Methods: Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle’s body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. Results: On average, the IZ was located 65.5 mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10 ± 9.7 mm, maximal – 30 mm, the difference being statistically significant (p = 0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62 mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5 mm (mean difference 2.8 mm, p = 0.767). Conclusion: Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure.  相似文献   

20.
The Nordic Hamstring Exercise (NHE) has been introduced as a training tool to improve the efficiency of eccentric hamstring muscle contraction. The aim of this study was to perform a biomechanical analysis of the NHE. Eighteen participants (20.4 ± 1.9 years) performed two sets of five repetitions each of the NHE and maximal eccentric voluntary contraction (MEVC) of the knee flexors on an isokinetic dynamometer whilst knee angular displacement and electrical activity (EMG) of biceps femoris were measured. EMG was on average higher during the NHE (134.3% of the MEVC). During the forward fall of the NHE, the angle at which a sharp increase in downward velocity occurred varied between 47.9 and 80.5 deg, while the peak knee angular velocity (pVelocity) varied between 47.7 and 132.8 deg s?1. A significant negative correlation was found between pVelocity and peak EMG (r = ?0.62, p < 0.01) and EMG at 45 deg (r = ?0.75, p < 0.01) expressed as a percentage of peak MEVC EMG. Some of the variables analyzed exhibited good to excellent levels of intra- and inter-session reliability. This type of analysis could be used to indirectly monitor the level of eccentric strength of the hamstring muscles while performing the NHE and potentially any training- or injury-related changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号