首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiac cycle imposes a mechanical stress that dilates elastic carotid arteries, while shear stress largely contributes to the endothelium-dependent dilation of downstream cerebral arteries. In the presence of dyslipidemia, carotid arteries stiffen while the endothelial function declines. We reasoned that stiffening of carotid arteries would be prevented by reducing resting heart rate (HR), while improving the endothelial function would regulate cerebral artery compliance and function. Thus we treated or not 3-mo-old male atherosclerotic mice (ATX; LDLr(-/-):hApoB(+/+)) for 3 mo with the sinoatrial pacemaker current inhibitor ivabradine (IVA), the β-blocker metoprolol (METO), or subjected mice to voluntary physical training (PT). Arterial (carotid and cerebral artery) compliance and endothelium-dependent flow-mediated cerebral dilation were measured in isolated pressurized arteries. IVA and METO similarly reduced (P < 0.05) 24-h HR by ≈15%, while PT had no impact. As expected, carotid artery stiffness increased (P < 0.05) in ATX mice compared with wild-type mice, while cerebral artery stiffness decreased (P < 0.05); this paradoxical increase in cerebrovascular compliance was associated with endothelial dysfunction and an augmented metalloproteinase-9 (MMP-9) activity (P < 0.05), without changing the lipid composition of the wall. Reducing HR (IVA and METO) limited carotid artery stiffening, but plaque progression was prevented by IVA only. In contrast, IVA maintained and PT improved cerebral endothelial nitric oxide synthase-dependent flow-mediated dilation and wall compliance, and both interventions reduced MMP-9 activity (P < 0.05); METO worsened endothelial dysfunction and compliance and did not reduce MMP-9 activity. In conclusion, HR-dependent mechanical stress contributes to carotid artery wall stiffening in severely dyslipidemic mice while cerebrovascular compliance is mostly regulated by the endothelium.  相似文献   

2.
Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR(-/-)hApoB(+/+); 3 mo old) mice with catechin (30 mg · kg(-1) · day(-1)) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities.  相似文献   

3.
We tested the hypothesis that high fat (HF) feeding results in endothelial dysfunction in resistance arteries of epididymal white adipose tissue (eWAT) and is mediated by adipose tissue inflammation. When compared with normal chow (NC)-fed mice (n = 17), HF-fed male B6D2F1 mice were glucose intolerant and insulin resistant as assessed by glucose tolerance test (area under the curve; HF, 18,174 ± 1,889 vs. NC, 15,814 ± 666 mg·dl(-1)·min(-1); P < 0.05) and the homeostatic model assessment (HF, 64.1 ± 4.3 vs. NC, 85.7 ± 6.4; P = 0.05). HF diet-induced metabolic dysfunction was concomitant with a proinflammatory eWAT phenotype characterized by greater macrophage infiltration (HF, 3.9 ± 0.8 vs. NC, 0.8 ± 0.4%; P = 0.01) and TNF-α (HF, 22.6 ± 4.3 vs. NC, 11.4 ± 2.5 pg/dl; P < 0.05) and was associated with resistance artery dysfunction, evidenced by impaired endothelium-dependent dilation (EDD) (maximal dilation; HF, 49.2 ± 10.7 vs. NC, 92.4 ± 1.4%; P < 0.01). Inhibition of nitric oxide (NO) synthase by N(ω)-nitro-l-arginine methyl ester (l-NAME) reduced dilation in NC (28.9 ± 6.3%; P < 0.01)- and tended to reduce dilation in HF (29.8 ± 9.9%; P = 0.07)-fed mice, eliminating the differences in eWAT artery EDD between NC- and HF-fed mice, indicative of reduced NO bioavailability in eWAT resistance arteries after HF feeding. In vitro treatment of excised eWAT arteries with recombinant TNF-α (rTNF) impaired EDD (P < 0.01) in NC (59.7 ± 10.9%)- but not HF (59.0 ± 9.3%)-fed mice. l-NAME reduced EDD in rTNF-treated arteries from both NC (21.9 ± 6.4%)- and HF (29.1 ± 9.2%)-fed mice (both P < 0.01). In vitro treatment of arteries with a neutralizing antibody against TNF-α (abTNF) improved EDD in HF (88.2 ± 4.6%; P = 0.05)-fed mice but was without effect on maximal dilation in NC (89.0 ± 5.1%)-fed mice. l-NAME reduced EDD in abTNF-treated arteries from both NC (25.4 ± 7.5%)- and HF (27.1 ± 16.8%)-fed mice (both P < 0.01). These results demonstrate that inflammation in the visceral adipose tissue resulting from diet-induced obesity impairs endothelial function and NO bioavailability in the associated resistance arteries. This dysfunction may have important implications for adipose tissue blood flow and appropriate tissue function.  相似文献   

4.
Matrix metalloproteases (MMPs) are a family of zinc peptidases involved in extracellular matrix turnover. There is evidence that increased MMP activity is involved in remodeling of resistance vessels in chronic hypertension. Thus we hypothesized that inhibition of MMP activity with doxycycline (DOX) would attenuate vascular remodeling. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with DOX (50 mg·kg(-1)·day(-1) in the drinking water) for 6 wk. Untreated SHRSP were controls. Blood pressure was measured by telemetry during the last week. Middle cerebral artery (MCA) and mesenteric resistance artery (MRA) passive structures were assessed by pressure myography. MMP-2 expression in aortas was measured by Western blot. All results are means ± SE. DOX caused a small increase in mean arterial pressure (SHRSP, 154 ± 1; SHRSP + DOX, 159 ± 3 mmHg; P < 0.001). Active MMP-2 expression was reduced in aorta from SHRSP + DOX (0.21 ± 0.06 vs. 0.49 ± 0.13 arbitrary units; P < 0.05). In the MCA, at 80 mmHg, DOX treatment increased the lumen (273.2 ± 4.7 vs. 238.3 ± 6.3 μm; P < 0.05) and the outer diameter (321 ± 5.3 vs. 290 ± 7.6 μm; P < 0.05) and reduced the wall-to-lumen ratio (0.09 ± 0.002 vs. 0.11 ± 0.003; P < 0.05). Damage after transient cerebral ischemia (transient MCA occlusion) was reduced in SHRSP + DOX (20.7 ± 4 vs. 45.5 ± 5% of hemisphere infarcted; P < 0.05). In the MRA, at 90 mmHg DOX, reduced wall thickness (29 ± 1 vs. 22 ± 1 μm; P < 0.001) and wall-to-lumen ratio (0.08 ± 0.004 vs. 0.11 ± 0.008; P < 0.05) without changing lumen diameter. These results suggest that MMPs are involved in hypertensive vascular remodeling in both the peripheral and cerebral vasculature and that DOX reduced brain damage after cerebral ischemia.  相似文献   

5.
Blood flow and vasodilatory responses are altered by age in a number of vascular beds, including the cerebral circulation. To test the role of prostaglandins as regulators of cerebral vascular function, we examined cerebral vasodilator responses to CO(2) (cerebrovascular reactivity) in young (26 ± 5 yr; 6 males/6 females) and older (65 ± 6 yr, 5 males/5 females) healthy humans before and after cyclooxygenase inhibition (using indomethacin). Middle cerebral artery velocity (MCAv) responses to stepped hypercapnia were measured before and 90 min after indomethacin. Changes in MCAv during the recovery from hypercapnia (vasoconstrictor responses) were also evaluated before and after indomethacin. Cerebrovascular reactivity was calculated using linear regression between MCAv and end-tidal CO(2). Young adults demonstrated greater MCAv (55 ± 6 vs. 39 ± 5 cm/s: P < 0.05) and MCAv reactivity (1.67 ± 0.20 vs. 1.09 ± 0.19 cm·s(-1)·mmHg(-1); P < 0.05) to hypercapnia compared with older adults (P < 0.05). In both groups MCAv and MCAv reactivity decreased between control and indomethacin. Furthermore, the age-related differences in these cerebrovascular variables were abolished by indomethacin. During the recovery from hypercapnia, there were no age-related differences in MCAv reactivity; however, indomethacin significantly reduced the MCAv reactivity in both groups. Taken together, these results suggest that cerebral blood flow velocity and cerebrovascular reactivity are attenuated in aging humans, and may be due to a loss of prostaglandin-mediated vasodilation.  相似文献   

6.
Hypertension alters cerebrovascular regulation and increases the brain's susceptibility to stroke and dementia. We investigated the temporal relationships between the arterial pressure (AP) elevation induced by "slow pressor" angiotensin II (ANG II) infusion, which recapitulates key features of human hypertension, and the resulting cerebrovascular dysfunction. Minipumps delivering saline or ANG II for 14 days were implanted subcutaneously in C57BL/6 mice (n = 5/group). Cerebral blood flow was assessed by laser-Doppler flowmetry in anesthetized mice equipped with a cranial window. With ANG II (600 ng · kg(-1) · min(-1)), AP started to rise after 9 days (P < 0.05 vs. saline), remained elevated at 11-17 days, and returned to baseline at 21 days (P > 0.05). ANG II attenuated the cerebral blood flow increase induced by neural activity (whisker stimulation) or endothelium-dependent vasodilators, an effect observed before the AP elevation (7 days), as well as after the hypertension subsided (21 days). Nonpressor doses of ANG II (200 ng · kg(-1) · min(-1)) induced cerebrovascular dysfunction and oxidative stress without elevating AP (P > 0.05 vs. saline), whereas phenylephrine elevated AP without inducing cerebrovascular effects. ANG II (600 ng · kg(-1) · min(-1)) augmented neocortical reactive oxygen species (ROS) with a time course similar to that of the cerebrovascular dysfunction. Neocortical application of the ROS scavenger manganic(I-II)meso-tetrakis(4-benzoic acid)porphyrin or the NADPH oxidase peptide inhibitor gp91ds-tat attenuated ROS and cerebrovascular dysfunction. We conclude that the alterations in neurovascular regulation induced by slow pressor ANG II develop before hypertension and persist beyond AP normalization but are not permanent. The findings unveil a striking susceptibility of cerebrovascular function to the deleterious effects of ANG II and raise the possibility that cerebrovascular dysregulation precedes the elevation in AP also in patients with ANG II-dependent hypertension.  相似文献   

7.
To test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs. Y), which was normalized by TEMPOL. O had large elastic artery stiffening, as indicated by greater aortic pulse wave velocity (aPWV, 508 ± 22 vs. 418 ± 22 AU), which was associated with increased adventitial collagen I expression (P < 0.05 vs. Y). TEMPOL reversed the age-associated increases in aPWV (434 ± 21 AU) and collagen in vivo, and SOD reversed the increases in collagen I in adventitial fibroblasts from older rats in vitro. Isolated carotid arteries of O had impaired endothelial function as indicated by reduced acetylcholine-stimulated endothelium-dependent dilation (EDD) (75.6 ± 3.2 vs. 94.5 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (L-NAME) associated with decreased endothelial NO synthase (eNOS) expression (P < 0.05 vs. Y). TEMPOL restored EDD (94.5 ± 1.4%), NO bioavailability and eNOS in O. Nitrotyrosine and expression of NADPH oxidase were ~100-200% greater, and MnSOD was ~75% lower in O (P < 0.05 vs. Y). TEMPOL normalized nitrotyrosine and NADPH oxidase in O, without affecting MnSOD. Aortic pro-inflammatory cytokines were greater in O (P < 0.05 vs. Y) and normalized by TEMPOL. Short-term treatment of excessive superoxide with TEMPOL ameliorates large elastic artery stiffening and endothelial dysfunction with aging, and this is associated with normalization of arterial collagen I, eNOS, oxidative stress, and inflammation.  相似文献   

8.
Aging-related changes in vascular stiffening and permeability are associated with cardiovascular disease. We examined the interaction of estradiol on the aging process in vascular tissue from rats by assessing the changes in endothelial layer permeability, arterial compliance, and glycoxidative damage levels. We isolated carotid arteries from ovariectomized (OVX) rats that underwent 1 yr of estrogen treatment with subcutaneous pellets and a subsequent 1 mo of cessation of treatment. Endothelial layer permeability and arterial compliance were determined using quantitative fluorescence microscopy. Endothelial layer permeability was reduced with estradiol treatment (estrogen groups, 2.58 +/- 0.21 ng dextran x min(-1) x cm(-2) vs. nonestrogen groups, 4.01 +/- 0.30 ng dextran x min(-1) x cm(-2); P < 0.05). Additionally, arteries from animals treated with estradiol had an increased compliance index (estrogen groups, 82.9 +/- 3.8 mm2. Torr vs. nonestrogen groups, 69.3 +/- 3.2 mm2. Torr; P < 0.05). Estradiol treatment also reduced levels of pentosidine, which is a specific marker of glycoxidative damage (estrogen groups, 0.11 +/- 0.03 pmol pentosidine/nmol collagen vs. nonestrogen groups, 0.20 +/- 0.03 pmol pentosidine/nmol collagen; P < 0.05). These results indicate that estradiol has multiple chronic vasculoprotective effects on the artery wall to maintain normal vascular wall function.  相似文献   

9.
10.
Human atherosclerotic coronary vessels elicited vasoconstriction to acetylcholine (Ach) and revealed a phenomenon of vasospasm. Homocysteine (Hcy) levels are elevated in the atherosclerotic plaque tissue, suggesting its pathological role in endothelial damage in atherosclerotic diseases. Accordingly, we examined the role hyperhomocysteinemia in coronary endothelial dysfunction, vessel wall thickness, lumen narrowing, leading to acute/chronic coronary vasospasm. The therapeutic potential and mechanisms of folic acid (FA) using hyperhomocysteinemic cystathionine beta synthase heterozygote (CBS-/+) and wild type (CBS+/+) mice were addressed. The CBS-/+ and CBS+/+ mice were treated with or without a Hcy lowering agent FA in drinking water (0.03 g/L) for 4 weeks. The isolated mouse septum coronary artery was cannulated and pressurized at 60 mmHg. The wall thickness and lumen diameters were measured by Ion-Optic. The vessels were treated with Ach (10(-8) -10(-5) M) and, for comparison, with non-endothelial vasodilator sodium nitroprusside (10(-5) M). The endothelium-impaired arteries from CBC-/+ mice constricted in response to Ach and this vasoconstriction was mitigated with FA supplementation. The level of endothelial nitric oxide synthase (eNOS) was lower in coronary artery in CBS-/+ than of CBS+/+ mice. Treatment with FA increased the levels of Ach-induced NO generation in the coronary artery of CBS-/+ mice. The results suggest that Ach induced coronary vasoconstriction in CBS-/+ mice and this vasoconstriction was ameliorated by FA treatment. The mechanisms for the impairment of vascular function and therapeutic effects of FA may be related to the regulation of eNOS expression, NO availability and tissue homocysteine.  相似文献   

11.
Selective cerebral vascular dysfunction in Mn-SOD-deficient mice.   总被引:1,自引:0,他引:1  
We tested the hypothesis that the mitochondrial form of superoxide dismutase [manganese superoxide dismutase (Mn-SOD)] protects the cerebral vasculature. Basilar arteries (baseline diameter approximately 140 microm) from mice were isolated, cannulated, and pressurized to measure vessel diameter. In arteries from C57BL/6 mice preconstricted with U-46619, acetylcholine (ACh; an endothelium-dependent vasodilator) produced dilation that was similar in male and female mice and abolished by an inhibitor of nitric oxide synthase. Vasodilation to ACh was not altered in heterozygous male or female Mn-SOD-deficient (Mn-SOD+/-) mice compared with wild-type littermate controls (Mn-SOD+/+). Constriction of the basilar artery to arginine vasopressin, but not KCl or U-46619, was increased in Mn-SOD+/- mice (P<0.05), and this effect was prevented by tempol, a scavenger of superoxide. We also examined responses of cerebral (pial) arterioles (branches of the middle cerebral artery, control diameter approximately 30 microm) to ACh in anesthetized mice using a cranial window. Responses to ACh, but not nitroprusside (an endothelium-independent agonist), were reduced (P<0.05) in cerebral arterioles in Mn-SOD+/- mice, and this effect was prevented by tempol. Thus these are the first data on the role of Mn-SOD in cerebral circulation. In the basilar artery, ACh produced nitric oxide-mediated dilation that was similar in male and female mice. Under normal conditions in cerebral arteries, responses to ACh were not altered but constrictor responses were selectively enhanced in Mn-SOD+/- mice. In the cerebral microcirculation, there was superoxide-mediated impairment of responses to ACh.  相似文献   

12.
Although postnatal maturation potently modulates agonist-induced cerebrovascular contractility, its effects on the mechanisms mediating cerebrovascular myogenic tone remain poorly understood. Because the regulation of calcium influx and myofilament calcium sensitivity change markedly during early postnatal life, the present study tested the general hypothesis that early postnatal maturation increases the pressure sensitivity of cerebrovascular myogenic tone via age-dependent enhancement of pressure-induced calcium mobilization and myofilament calcium sensitivity. Pressure-induced myogenic tone and changes in artery wall intracellular calcium concentrations ([Ca(2+)](i)) were measured simultaneously in endothelium-denuded, fura-2-loaded middle cerebral arteries (MCA) from pup [postnatal day 14 (P14)] and adult (6-mo-old) Sprague-Dawley rats. Increases in pressure from 20 to 80 mmHg enhanced myogenic tone in MCA from both pups and adults although the normalized magnitudes of these increases were significantly greater in pup than adult MCA. At each pressure step, vascular wall [Ca(2+)](i) was also significantly greater in pup than in adult MCA. Nifedipine significantly attenuated pressure-evoked constrictions in pup MCA and essentially eliminated all responses to pressure in the adult MCA. Both pup and adult MCA exhibited pressure-dependent increases in calcium sensitivity, as estimated by changes in the ratio of pressure-induced myogenic tone to wall [Ca(2+)](i). However, there were no differences in the magnitudes of these increases between pup and adult MCA. The results support the view that regardless of postnatal age, changes in both calcium influx and myofilament calcium sensitivity contribute to the regulation of cerebral artery myogenic tone. The greater cerebral myogenic response in P14 compared with adult MCA appears to be due to greater pressure-induced increases in [Ca(2+)](i), rather than enhanced augmentation of myofilament calcium sensitivity.  相似文献   

13.
Vascular disease occurs commonly during aging. Carotid artery and cerebrovascular disease are major causes of stroke and contributors to dementia. Recent evidence suggests that peroxisome proliferator-activated receptor-γ (PPARγ) may play a protective role in the vasculature, but the potential importance of PPARγ in vascular aging is unknown. To examine the hypothesis that PPARγ normally protects against vascular aging, we studied heterozygous knockin mice expressing a human dominant-negative mutation in PPARγ (P465L, designated L/+). Endothelial dysfunction, a major contributor to vascular disease, was studied using carotid arteries from adult (8 ± 1 mo) and old (24 ± 1 mo) L/+ mice and wild-type littermates. In arteries from wild-type mice, responses to the endothelium-dependent agonist ACh were similar in adult and old wild-type mice but were reduced by ~50% in old L/+ mice (n = 7-10, P < 0.05). Impaired responses in arteries from old L/+ mice were restored to normal by a scavenger of superoxide. Relaxation of arteries to nitroprusside (an NO donor) was similar in all groups. Contraction of arteries to U46619 was not affected by age or genotype, while maximal responses to endothelin-1 were reduced with age in both wild-type and L/+ mice. Vascular expression (mRNA) of the catalytic component of NADPH oxidase (Nox2) was not altered in wild-type mice but was increased significantly in old L/+ mice. These findings provide the first evidence that interference with PPARγ function accelerates vascular aging, suggesting a novel role for PPARγ in protecting against age-induced oxidative stress and endothelial dysfunction.  相似文献   

14.
Hypoxic regulation of the fetal cerebral circulation.   总被引:2,自引:0,他引:2  
Fetal cerebrovascular responses to acute hypoxia are fundamentally different from those observed in the adult cerebral circulation. The magnitude of hypoxic vasodilatation in the fetal brain increases with postnatal age although fetal cerebrovascular responses to acute hypoxia can be complicated by age-dependent depressions of blood pressure and ventilation. Acute hypoxia promotes adenosine release, which depresses fetal cerebral oxygen consumption through action of adenosine on neuronal A1 receptors and vasodilatation through activation of A2 receptors on cerebral arteries. The vascular effect of adenosine can account for approximately half the vasodilatation observed in response to hypoxia. Hypoxia-induced release of nitric oxide and opioids can account for much of the adenosine-independent cerebral vasodilatation observed in response to hypoxia in the fetus. Direct effects of hypoxia on cerebral arteries account for the remaining fraction, although the vascular endothelium contributes relatively little to hypoxic vasodilatation in the immature cerebral circulation. In contrast to acute hypoxia, fetal cerebral blood flow tends to normalize during acclimatization to chronic hypoxia even though cardiac output is depressed. However, uncompensated chronic hypoxia in the fetus can produce significant changes in brain structure and function, alteration of respiratory drive and fluid balance, and increased incidence of intracranial hemorrhage and periventricular leukomalacia. At the level of the fetal cerebral arteries, chronic hypoxia increases protein content and depresses norepinephrine release, contractility, and receptor densities associated with contraction but also attenuates endothelial vasodilator capacity and decreases the ability of ATP-sensitive and calcium-sensitive potassium channels to promote vasorelaxation. Overall, fetal cerebrovascular adaptations to chronic hypoxia appear prioritized to conserve energy while preserving basic contractility. Many gaps remain in our understanding of how the effects of acute and chronic hypoxia are mediated in fetal cerebral arteries, but studies of adult cerebral arteries have produced many powerful pharmacological and molecular tools that are simply awaiting application in studies of fetal cerebral artery responses to hypoxia.  相似文献   

15.

Objective

Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice.

Methods

Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively.

Results

Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling.

Conclusions

These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries.  相似文献   

16.
Primary pulmonary hypertension is a rare but deadly disease. Lungs extracted from PPH patients are deficient in endothelial nitric oxide synthase (eNOS), making the eNOS-null mouse a potentially useful model of the disease. To better understand the progression of pulmonary vascular remodeling in the congenital absence of eNOS, we induced pulmonary hypertension in eNOS-null mice using hypobaric hypoxia, and then quantified large artery structure and function in contralateral vessels. In particular, to assess structure we quantified diameter, wall thickness, and collagen, elastin and smooth muscle cell content; to quantify function we performed pressure-diameter tests. After remodeling, the pulmonary arteries had increased wall, collagen and elastin thicknesses compared to controls (P<0.05). The remodeled pulmonary arteries also had increased elastic moduli at low and high strains compared to controls (P<0.05). The increases in moduli at low and high strain correlated with increases in elastin and collagen thickness, respectively (P<0.05). These results provide insight into the mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS, and the coupled nature of these changes.  相似文献   

17.
We tested the hypothesis that short-term nitrite therapy reverses vascular endothelial dysfunction and large elastic artery stiffening with aging, and reduces arterial oxidative stress and inflammation. Nitrite concentrations were lower (P < 0.05) in arteries, heart, and plasma of old (26-28 month) male C57BL6 control mice, and 3 weeks of sodium nitrite (50 mg L(-1) in drinking water) restored nitrite levels to or above young (4-6 month) controls. Isolated carotid arteries of old control mice had lower acetylcholine (ACh)-induced endothelium-dependent dilation (EDD) (71.7 ± 6.1% vs. 93.0 ± 2.0%) mediated by reduced nitric oxide (NO) bioavailability (P < 0.05 vs. young), and sodium nitrite restored EDD (95.5 ± 1.6%) by increasing NO bioavailability. 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide dismutase (SOD) mimetic, apocynin, a nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, and sepiapterin (exogenous tetrahydrobiopterin) each restored EDD to ACh in old control, but had no effect in old nitrite-supplemented mice. Old control mice had increased aortic pulse wave velocity (478 ± 16 vs. 332 ± 12 AU, P < 0.05 vs. young), which nitrite supplementation lowered (384 ± 27 AU). Nitrotyrosine, superoxide production, and expression of NADPH oxidase were ~100-300% greater and SOD activity was ~50% lower in old control mice (all P < 0.05 vs. young), but were ameliorated by sodium nitrite treatment. Inflammatory cytokines were markedly increased in old control mice (P < 0.05), but reduced to levels of young controls with nitrite supplementation. Short-term nitrite therapy reverses age-associated vascular endothelial dysfunction, large elastic artery stiffness, oxidative stress, and inflammation. Sodium nitrite may be a novel therapy for treating arterial aging in humans.  相似文献   

18.
We assessed the convergent validity of commonly applied metrics of cerebral autoregulation (CA) to determine the extent to which the metrics can be used interchangeably. To examine between-subject relationships among low-frequency (LF; 0.07-0.2 Hz) and very-low-frequency (VLF; 0.02-0.07 Hz) transfer function coherence, phase, gain, and normalized gain, we performed retrospective transfer function analysis on spontaneous blood pressure and middle cerebral artery blood velocity recordings from 105 individuals. We characterized the relationships (n = 29) among spontaneous transfer function metrics and the rate of regulation index and autoregulatory index derived from bilateral thigh-cuff deflation tests. In addition, we analyzed data from subjects (n = 29) who underwent a repeated squat-to-stand protocol to determine the relationships between transfer function metrics during forced blood pressure fluctuations. Finally, data from subjects (n = 16) who underwent step changes in end-tidal Pco(2) (Pet(CO(2))) were analyzed to determine whether transfer function metrics could reliably track the modulation of CA within individuals. CA metrics were generally unrelated or showed only weak to moderate correlations. Changes in Pet(CO(2)) were positively related to coherence [LF: β = 0.0065 arbitrary units (AU)/mmHg and VLF: β = 0.011 AU/mmHg, both P < 0.01] and inversely related to phase (LF: β = -0.026 rad/mmHg and VLF: β = -0.018 rad/mmHg, both P < 0.01) and normalized gain (LF: β = -0.042%/mmHg(2) and VLF: β = -0.013%/mmHg(2), both P < 0.01). However, Pet(CO(2)) was positively associated with gain (LF: β = 0.0070 cm·s(-1)·mmHg(-2), P < 0.05; and VLF: β = 0.014 cm·s(-1)·mmHg(-2), P < 0.01). Thus, during changes in Pet(CO(2)), LF phase was inversely related to LF gain (β = -0.29 cm·s(-1)·mmHg(-1)·rad(-1), P < 0.01) but positively related to LF normalized gain (β = 1.3% mmHg(-1)/rad, P < 0.01). These findings collectively suggest that only select CA metrics can be used interchangeably and that interpretation of these measures should be done cautiously.  相似文献   

19.
The purpose of this study was to characterize vascular responses and to examine mechanisms of vascular dysfunction in TallyHo mice, a new polygenic model of Type II diabetes. Responses of cerebral arterioles and carotid arteries were examined in vivo by using a cranial window and in vitro by using tissue baths, respectively. Dilatation of cerebral arterioles (baseline diameter = 33 +/- 1 micro m) in response to acetylcholine, but not to nitroprusside, was markedly reduced (P < 0.05) in TallyHo mice. Responses of cerebral arterioles to acetylcholine in TallyHo mice were restored to normal with polyethylene glycol-superoxide dismutase (100 U/ml; a superoxide scavenger). Responses to acetylcholine were also greatly impaired (P < 0.05) in the carotid arteries from TallyHo mice. Phenylephrine- and serotonin-, but not to KCl- or U46619-, induced contraction was increased two- to fourfold (P < 0.05) in carotid arteries of TallyHo mice. Responses to phenylephrine and serotonin were reduced to similar levels in the presence of Y-27632 (an inhibitor of Rho kinase; 3 micro mol/l). These findings provide the first evidence that vascular dysfunction is present in TallyHo mice and that oxidative stress and enhanced activity of Rho kinase may contribute to altered vascular function in this genetic model of Type II diabetes.  相似文献   

20.
OBJECTIVES: To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND: Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS: Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS: The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION: Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号