首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During banana ripening there is a massive conversion into sugars, mainly sucrose, which can account for more than 10% of the fresh weight of the fruit. An ethylene burst is the trigger of the banana ripening process but there is evidence that other compounds can act as modulators of some biochemical pathways. As previously demonstrated, gibberellic acid (GA3) can impair the onset of starch degradation and affect some degradative enzymes, but effects on the sucrose biosynthetic apparatus have not yet been elucidated. Here, the activity and amount of sucrose synthase (SuSy; E.C. 2.4.1.13) and sucrose–phosphate synthase (SPS; E.C. 2.4.1.14), respiration rates, ethylene production, and carbohydrate levels, were evaluated in GA3-infiltrated and non-infiltrated banana slices. The exogenous supply of gibberellin did not alter the respiration or the ethylene profile but delayed sucrose accumulation by at least 2 days. While SuSy activity was similar in control and treated slices, SPS increase and sucrose accumulation was related in treated slices. Western blotting with specific antiserum showed no apparent effects of GA3 on the amount of SuSy protein, but impaired the increase in SPS protein during ripening. The overall results indicate that although GA3 did not block carbohydrate mobilisation in a irreversibly way, it clearly affected the triggering of starch breakdown and sucrose synthesis. Also, the delayed sucrose accumulation in GA3-infiltrated slices could be explained by the disturbance of SPS activity. In conclusion, gibberellins can play an important role during banana ripening and our results also reinforce the idea of multiple regulatory components in the ripening pathway, as evidenced by the GA3 effects.  相似文献   

2.
3.
4.
本文从乙烯生物合成、呼吸作用、碳水化合物代谢、细胞壁降解及其它有关成熟的代谢过程等方面,概述与香蕉果实成熟相关的基因研究进展。  相似文献   

5.
A post-harvest dip of banana (Musa paradisiaca L.) fruits into the aqueous solutions of abscisic acid and indoleacetic acid significantly hastened the banana ripening, judging from increases in total sugars, acidity, ascorbic acid and units of von Losecke's colour chart during storage at 20°C. The treatment of bananas with gibberellic acid and kinetin, on the contrary, retarded banana ripening as indicated by higher values for firmness, starch, cellulose and hemicellulose. The results obtained suggest that ripening of banana can be controlled chemically.  相似文献   

6.
Phytohormones regulate numerous aspects of plant growth and development. Green-mature banana fruit were treated with deionized water (control), abscisic acid (ABA), indole-3-acetic acid (IAA) and ABA + IAA, respectively, to investigate the role of ABA and IAA in fruit ripening. Results showed that ABA accelerated fruit ripening, but IAA delayed the process. However, treatment of ABA + IAA showed little difference in fruit color and firmness. The acceleration of ABA and delay of IAA on banana ripening process seems to be neutralized by ABA + IAA. Digital gene expression revealed that ABA + IAA treated fruit maintained the similar color phenotype with the control by regulating the expression of chlorophyll degradation-related gene PaO (GSMUA_Achr6G25590_001), and carotenoid biosynthesis-related genes DXR (GSMUA_Achr3G20790_001) and PSY (GSMUA_Achr2G12480_001, GSMUA_Achr4G17270_001, GSMUA_Achr4G17290_001). Moreover, ABA + IAA treated fruit maintained the similar softening phenotype with the control by adjusting the expression of pectin degradation-related genes PME (GSMUA_Achr3G05740_001) and PL (GSMUA_Achr6G28160_001, GSMUA_Achr7G04580_001). ABA + IAA treatment nearly abolished the action of individual ABA or IAA through equilibrating the expression of specific genes involved in chlorophyll degradation, carotenoid biosynthesis and pectin degradation pathways in the postharvest ripening of banana. The interaction between ABA and IAA might exercise as an antagonistic mechanism of neutralizing the specific gene expression either induced by ABA or reduced by IAA in the postharvest ripening of banana.  相似文献   

7.
8.
Water stress stimulates sucrose synthesis and inhibits starch and cell-wall synthesis in tissue slices of growing potato (Solanum tuberosum L. cv. Desirée) tubers. Based on the analysis of fluxes and metabolites, Geigenberger et al. (1997, Planta 201: 502–518) proposed that water deficits up to −0.72 MPa stimulate sucrose synthesis, leading to decreased starch synthesis as a result of the resulting decline of phosphorylated metabolite levels, whereas more-severe water deficits directly inhibit the use of ADP-glucose. Potato plants with decreased expression of adenosine 5′-diphosphoglucose pyrophosphorylase (AGPase) have been used to test the prediction that the contribution of AGPase to the control of starch synthesis should decrease in severely water-stressed tuber material. Freshly cut slices from wild-type and antisense tubers were incubated at a range of mannitol concentrations (20, 300 and 500 mM) and the metabolism of [14C]glucose was analysed. A 86–97% reduction of AGPase activity led to a major but non-stoichiometric inhibition of starch accumulation in intact growing tubers attached to the plant (40–85%), and an inhibition of starch synthesis in non-stressed tuber slices incubated in 20 mM mannitol (60–80%). The inhibition of starch synthesis was accompanied by a 2- to 8-fold increase in the levels of sugars in intact tubers and a 2- to 3-fold stimulation of sucrose synthesis in tuber slices, whereas respiration and cell-wall synthesis were not significantly affected. The strong impact of AGPase on carbon partitioning in non-stressed tubers and tuber slices was retained in slices subjected to moderate water deficit (300 mM mannitol, corresponding to −0.72 MPa). In discs incubated in 500 mM mannitol (corresponding to −1.2 MPa) this response was modified. A 80–97% reduction of AGPase resulted in only a 0–40% inhibition of starch synthesis. Further, the water stress-induced stimulation of sucrose synthesis was abolished in the transformants. The results provide direct evidence that the contribution of AGPase to the control of starch synthesis can be modified by environmental factors, leading to a lower degree of control during severe water deficits. There was also a dramatic decrease in the labelling of cell-wall components in wild-type tuber slices incubated with 300 or 500 mM mannitol. The water stress-induced inhibition of cell-wall synthesis occurred independently of AGPase expression and the accompanying changes in starch and sucrose metabolism, indicating a direct inhibition of cell-wall synthesis in response to water stress. Received: 24 February 1999 / Accepted: 28 May 1999  相似文献   

9.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

10.
During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO2 respired during ripening was positively correlated with sugar accumulation (R2 = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO2 was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP.  相似文献   

11.
To examine whether 1,5-anhydroglucitol (AG) is derived from starch degradation in plant tissues, we colorimetrically measured AG contents of germinating amaranth seeds and ripening banana pulp. In both cases, as starch degradation proceeded, AG levels were significantly increased, but were 1,700-5,000 times lower than those of total soluble carbohydrates. α-1,4-Glucan lyase activity, which is measured by the 1,5- anhydrofructose (AF) liberated from non-reducing glucose residues of starch or glycogen, was too low to be detected in amaranth or banana by the 3,5-dinitrosalicylic acid method. On the other hand, AF reductase, which reduces AF to AG, was detected in germinating amaranth seeds and banana pulp. Thus, the increases in AG levels are conceived to be derived from starch breakdown, although further investigation is needed to answer whether the starch degradation pathway via α-1,4-glucan lyase/AF reductase exists in plant tissues.  相似文献   

12.
13.
The respiration of fresh slices of preclimacteric avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii var. Valery) fruits is stimulated by cyanide and antimycin. The respiration is sensitive to m-chlorobenzhydroxamic acid in the presence of cyanide but much less so in the presence of antimycin. In the absence of cyanide the contribution of the cyanide-resistant pathway to the coupled preclimacteric respiration is zero. In uncoupled slices, by contrast, the alternate path is engaged and utilized fully in avocado, and extensively in banana. Midclimacteric and peak climacteric slices are also cyanide-resistant and, in the presence of cyanide, sensitive to m-chlorobenzhydroxamic acid. In the absence of uncoupler there is no contribution by the alternate path in either tissue. In uncoupled midclimacteric avocado slices the alternate path is fully engaged. Midclimacteric banana slices, however, do not respond to uncouplers, and the alternate path is not engaged. Avocado and banana slices at the climacteric peak neither respond to uncouplers nor utilize the alternate path in the presence or absence of uncoupler.

The maximal capacities of the cytochrome and alternate paths, Vcyt and Valt, respectively, have been estimated in slices from preclimacteric and climacteric avocado fruit and found to remain unchanged. The total respiratory capacity in preclimacteric and climacteric slices exceeds the respiratory rise which attends fruit ripening. In banana Valt decreases slightly with ripening.

The aging of thin preclimacteric avocado slices in moist air results in ripening with an accompanying climacteric rise. In this case the alternate path is fully engaged at the climacteric peak, and the respiration represents the total potential respiratory capacity present in preclimacteric tissue. The respiratory climacteric in intact avocado and banana fruits is cytochrome path-mediated, whereas the respiratory climacteric of ripened thin avocado slices comprises the alternate as well as the cytochrome path. The ripening of intact fruits is seemingly independent of the nature of the electron transport path.

Uncouplers are thought to stimulate glycolysis to the point where the glycolytic flux exceeds the oxidative capacity of the cytochrome path, with the result that the alternate path is engaged.

  相似文献   

14.
15.
Preclimacteric bananas fruits were treated for 12 h with ethylene to induce the climacteric rise in respiration. One day after the end of the hormonal treatment, the two activities of the bifunctional enzyme, phosphofructokinase 2/fructose-2,6-bisphosphatase started to increase to reach fourfold their initial value 6 days later. By contrast, the activities of the pyrophosphate-dependent and of the ATP-dependent 6-phosphofructo-1-kinases remained constant during the whole experimental period, the first one being fourfold greater than the second. The concentrations of fructose 2,6-bisphosphate and of fructose 1,6-bisphosphate increased in parallel during 4 days and then slowly decreased, the second one being always about 100-fold greater than the first. The change in fructose 2,6-bisphosphate concentration can be partly explained by the rise of the bifunctional enzyme, but also by an early increase in the concentration of fructose 6-phosphate, the substrate of all phosphofructokinases, and also by the decrease in the concentration of glycerate 3-phosphate, a potent inhibitor of phosphofructokinase 2. The burst in fructose 2,6-bisphosphate and the activity of the pyrophosphate-dependent phosphofructokinase, which is in banana the only enzyme known to be sensitive to fructose 2,6-bisphosphate, can explain the well-known increase in fructose 1,6-bisphosphate which occurs during ripening.  相似文献   

16.
Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a beta-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas.  相似文献   

17.
阿拉伯糖是果实软化过程中变化最明显的细胞壁糖残基之一,α-L-阿拉伯呋喃糖苷酶是导致细胞壁多糖中阿拉伯糖残基降解的主要糖苷酶。为阐明该酶在香蕉果实成熟软化中的作用,实验对香蕉贮藏过程中果皮和果肉中该酶活性以及果实硬度、呼吸强度和乙烯释放量的变化进行了研究。结果表明:α-L-阿拉伯呋喃糖苷酶在果实初期的变化很小,到果实硬度开始急剧下降时达到最大,增加量达10倍以上,且果肉中的酶活性大于果皮中;乙烯吸收剂处理延缓了香蕉果实呼吸和乙烯高峰的出现时间,降低了果实硬度、果皮和果肉中α-L-阿拉伯呋喃糖苷酶活性变化的速度和幅度。以上结果表明α-L-阿拉伯呋喃糖苷酶起诱导香蕉果实成熟的作用,在果实的软化中起着十分重要的作用,且其活性受乙烯的调节。  相似文献   

18.
Pollen embryogenesis in Solanum carolinense was induced by culturing anthers containing bicellular pollen grains on medium supplemented with indole-3-acetic acid (IAA). Pollen embryogenesis was also promoted by Ethrel and the ethylene precursor, aminocyclopropane carboxylic acid (ACC), although not to the same degree as IAA alone. Furthermore, IAA stimulated ethylene accumulation in culture to the same extent as did Ethrel and ACC. It is suggested that IAA induced pollen embryogenesis at least partially, through auxin-mediated ethylene production. However, since CoCl2, an inhibitor of ethylene synthesis, reduced the amount of ethylene in IAA-treated cultures but did not eliminate the formation of pollen embryos, IAA also appears to have a direct effect on morphogenesis in anther cultures.  相似文献   

19.
香蕉(MusaacuminataCollacv.DwarfCavendish)果实采后以商业上推荐使用的1.5%Pro-long溶液处理,贮藏于20℃和75%相对湿度下,分别测定果实的ACC含量、MACC含量、EFE酶活性、乙烯释放、叶绿素含量的变化和果实的硬度变化.结果表明,PRO-LONG处理延缓了香蕉果实果皮的叶绿素降解、硬度的下降以及乙烯释放的增加.在后熟过程中,处理果实的ACC含量发生积累.ACC含量的高峰在乙烯释放高峰和EFE酶活性高峰之前出现.与对照比较,处理果实的ACC含量和EFE酶活性的高峰延迟了5d出现.在后熟过程中,以Pro-long处理果肉四片,其EFE酶活性受部分抑制(抑制率为19.45%至40.51%).果实MACC含量在贮藏起初处于一个较显著水平,随着后熟的发展而逐步增加,但与ACC含量的明显增加相比变化是微小的.我们的研究进一步阐明了PRO-LONG涂膜对香蕉果实后熟的影响主要是通过减少氧的供给,部分地抑制了EFE酶活性,延缓了乙烯的形成和释放,从而延长了后熟过程.  相似文献   

20.
Abstract Biosynthesis of ethylene in tomato and avocado fruit slices, carrot root, pea seedling and tomato shoot segments, Penicillium expansum and Escherichia coli was found to be inhibited by inorganic phosphate. Compared with microbial systems, relatively high concentrations of phosphate in the incubating medium were necessary to bring about a significant inhibition of ethylene production in higher plants. The degree of inhibition in higher plants correlated with the increased internal cellular concentration of phosphate and not with that of the incubating medium. Phosphate concentrations inhibitory for ethylene biosynthesis did not affect the respiration of tomato fruit slices. The phosphate effect was reversible, confined to only the biological systems and was not due to a change in the ionic strength. The differential inhibitory effects of aminoethoxyvinylglycine on ethylene biosynthesis in tomato fruit slices of various stages of ripening, were markedly influenced by high phosphate concentrations. The data indicate a biological significance to the phosphate control of ethylene biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号