首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycoprotein glycosylation and cancer progression   总被引:26,自引:0,他引:26  
Glycosylation of glycoproteins and glycolipids is one of many molecular changes that accompany malignant transformation. GlcNAc-branched N-glycans and terminal Lewis antigen sequences have been observed to increase in some cancers, and to correlate with poor prognosis. Herein, we review evidence that beta1, 6GlcNAc-branching of N-glycans contributes directly to cancer progression, and we consider possible functions for the glycans. Mgat5 encodes N-acetylglucosaminyltransferase V (GlcNAc-TV), the Golgi enzyme required in the biosynthesis of beta1,6GlcNAc-branched N-glycans. Mgat5 expression is regulated by RAS-RAF-MAPK, a signaling pathway commonly activated in tumor cells. Ectopic expression of GlcNAc-TV in epithelial cells results in morphological transformation and tumor growth in mice, and over expression in carcinoma cells has been shown to induce metastatic spread. Ectopic expression of GlcNAc-TIII, an enzyme that competes with GlcNAc-TV for acceptor, suppresses metastasis in B16 melanoma cells. Furthermore, breast cancer progression and metastasis induced by a viral oncogene expressed in transgenic mice is markedly suppressed in a GlcNAc-TV-deficient background. Mgat5 gene expression and beta1, 6GlcNAc-branching of N-glycans are associated with cell motility, a required phenotype of malignant cells.  相似文献   

2.
Korczak B  Le T  Elowe S  Datti A  Dennis JW 《Glycobiology》2000,10(6):595-599
UDP-GlcNAc: Manalpha1-6Manbeta-R beta1-6 N-acetylglucosaminyltransferase V (EC 2.4.1.155, GlcNAc-TV) is a Golgi enzyme that substitutes the trimannosyl core in the biosynthetic pathway for complex-type N-linked glycans. GlcNAc-TV activity is regulated by oncogenes frequently activated in cancer cells ( ras, src, and her2/neu ) and by activators of T lymphocytes. Overexpression of GlcNAc-TV in epithelial cells results in morphological transformation, while tumor cell mutants selected for loss of GlcNAc-TV products show diminished malignant potential in mice. In this report, we have expressed and characterized a series of N- and C-terminal deletions of GlcNAc-TV. Portions of GlcNAc-TV sequence were fused at the N-terminal domain to IgG-binding domains of staphylococcal Protein A and expressed in CHOP cells. The secreted fusion proteins were purified by IgG Sepharose affinity chromatography and assayed for enzyme activities. The peptide sequence S(213-740)of GlcNAc-TV was determined to be essential for the catalytic activity, the remaining amino acids comprising a 183 amino acid stem region, a 17 amino acid transmembrane domain and a 12 amino acid cytosolic moiety. Further deletion of 5 amino acids to produce peptide R(218-740)reduced enzyme activity by 20-fold. Similar K(m)and V(max)values for donor and acceptor were observed for peptide S(213-740), the minimal catalytic domain, and peptide Q(39-740), which also included the stem region. Truncation of five amino acids from the C-terminus also resulted in a 20-fold loss of catalytic activity. Secondary structure predictions suggest a high frequency of turns in the stem region, and more contiguous stretches of alpha-helix found in the catalytic domain.  相似文献   

3.
Two CHO glycosylation mutants that were previously shown to lack N-linked carbohydrates with GlcNAc beta 1,6Man alpha 1,6 branches, and to belong to the same genetic complementation group, are shown here to differ in the activity of N-acetylglucosaminyltransferase V (GlcNAc-TV) (UDP-GlcNA: alpha 1,6mannose beta-N-acetylglucosaminyltransferase V). One mutant, Lec4, has no detectable GlcNAc-TV activity whereas the other, now termed Lec4A, has activity equivalent to that of parental CHO in detergent cell extracts. However, Lec4A GlcNAc-TV can be distinguished from CHO GlcNAc-TV on the basis of its increased sensitivity to heat inactivation and its altered subcellular compartmentalization. Sucrose density gradient fractionation shows that the major portion of GlcNAc-TV from Lec4A cells cofractionates with membranes of the ER instead of Golgi membranes where GlcNAc-TV is localized in parental CHO cells. Other experiments show that Lec4A GlcNAc-TV is not concentrated in lysosomes, or in a post-Golgi compartment, or at the cell surface. The altered localization in Lec4A cells is specific for GlcNAc-TV because two other Lec4A Golgi transferases cofractionate at the density of Golgi membranes. The combined data suggest that both lec4 and lec4A mutations affect the structural gene for GlcNAc-TV, causing either the loss of GlcNAc-TV activity (lec4) or its miscompartmentalization (lec4A). The identification of the Lec4A defect indicates that appropriate screening of different glycosylation-defective mutants should enable the isolation of other mammalian cell trafficking mutants.  相似文献   

4.
The glycosylation of integrins and other cell surface receptors is altered in many transformed cells. Notably, an increase in the number of beta1,6-branched N-linked oligosaccharides correlates strongly with invasive growth of cells. An ectopic expression of the Golgi enzyme N-acetylglucosaminyltransferase V (GlcNAc-TV), which forms beta1,6 linkages, promotes metastasis of a number of cell types. It is shown here that the 16-kDa transmembrane subunit (16K) of vacuolar H(+)-ATPase suppresses beta1,6 branching of beta(1) integrin and the epidermal growth factor receptor. Overexpression of 16K inhibits cell adhesion and invasion. 16K contains four hydrophobic membrane-spanning alpha-helices, and its ability to influence glycosylation is localized primarily within the second and fourth membrane-spanning alpha-helices. 16K also interacts directly with the transmembrane domain of beta(1) integrin, but its effects on glycosylation were independent of its binding to beta(1) integrin. These data link cell surface tumor-related glycosylation to a component of the enzyme responsible for acidification of the exocytic pathway.  相似文献   

5.
Human integrin alpha5 was transfected into the integrin alpha5/beta1-negative intestinal epithelial cell line Caco-2 to study EGF receptor (EGFR) and integrin alpha5/beta1 signaling interactions involved in epithelial cell proliferation. On uncoated or fibronectin-coated plastic, the integrin alpha5 and control (vector only) transfectants grew at similar rates. In the presence of the EGFR antagonistic mAb 225, the integrin alpha5 transfectants and controls were significantly growth inhibited on plastic. However, when cultured on fibronectin, the integrin alpha5 transfectants were not growth inhibited by mAb 225. The reversal of mAb 225-mediated growth inhibition on fibronectin for the integrin alpha5 transfectants correlated with activation of the EGFR, activation of MAPK, and expression of proliferating cell nuclear antigen. EGFR kinase activity was necessary for both MAPK activation and integrin alpha5/beta1-mediated cell proliferation. Although EGFR activation occurred when either the integrin alpha5-transfected or control cells were cultured on fibronectin, coprecipitation of the EGFR with SHC could be demonstrated only in the integrin alpha5-transfected cells. These results suggest that integrin alpha5/beta1 mediates fibronectin-induced epithelial cell proliferation through activation of the EGFR.  相似文献   

6.
In this study, we show that distinct compartmentalization patterns of the IL-1 molecules (IL-1alpha and IL-1beta), in the milieu of tumor cells that produce them, differentially affect the malignant process. Active forms of IL-1, namely precursor IL-1alpha (pIL-1alpha), mature IL-1beta (mIL-1beta), and mIL-1beta fused to a signal sequence (ssIL-1beta), were transfected into an established fibrosarcoma cell line, and tumorigenicity and antitumor immunity were assessed. Cell lines transfected with pIL-1alpha, which expresses IL-1alpha on the membrane, fail to develop local tumors and activate antitumor effector mechanisms, such as CTLs, NK cells, and high levels of IFN-gamma production. Cells transfected with secretable IL-1beta (mIL-1beta and ssIL-1beta) were more aggressive than wild-type and mock-transfected tumor cells; ssIL-1beta transfectants even exhibited metastatic tumors in the lungs of mice after i.v. inoculation (experimental metastasis). In IL-1beta tumors, increased vascularity patterns were observed. No detectable antitumor effector mechanisms were observed in spleens of mice injected with IL-1beta transfectants, mock-transfected or wild-type fibrosarcoma cells. Moreover, in spleens of mice injected with IL-1beta transfectants, suppression of polyclonal mitogenic responses (proliferation, IFN-gamma and IL-2 production) to Con A was observed, suggesting the development of general anergy. Histologically, infiltrating mononuclear cells penetrating the tumor were seen at pIL-1alpha tumor sites, whereas in mIL-1beta and ssIL-1beta tumor sites such infiltrating cells do not penetrate inside the tumor. This is, to our knowledge, the first report on differential, nonredundant, in vivo effects of IL-1alpha and IL-1beta in malignant processes; IL-1alpha reduces tumorigenicity by inducing antitumor immunity, whereas IL-1beta promotes invasiveness, including tumor angiogenesis, and also induces immune suppression in the host.  相似文献   

7.
Expression of the alpha(v)beta6 integrin is strikingly upregulated in several types of carcinoma, including human oral squamous cell carcinoma (SCC). Employing a neutralizing monoclonal antibody to alpha(v)beta6, we investigated its role in cell adhesion, proliferation, migration, and in vivo growth of an invasive human SCC line, termed HSC-3. We found that alpha(v)beta6 is strictly required for HSC-3 cell growth in a three-dimensional collagen gel and also prominently contributes to cell migration in two different assay systems. In addition, the anti-alpha(v)beta6 antibody inhibited the invasive growth of HSC-3 cells transorally injected into nude mice. In the presence of the coinjected antibody, the average tumor size at 10 days was reduced by 59%. Histologically, antibody-treated tumors appeared less invasive than control tumors. Furthermore, intravenous application of a neutralizing antibody to the alpha(v) integrin subunit retarded HSC-3 tumor growth. These results point to a possible critical role of the alpha(v)beta6 integrin in controlling growth and invasion of human oral cancer cells.  相似文献   

8.
Sulphated N-linked carbohydrate chains isolated from recombinant human tissue plasminogen activator expressed in mouse epithelial (C127) cells were analysed as oligosaccharide alditols by methylation analysis, liquid secondary ion mass spectrometry, and one- and two-dimensional 1H-NMR spectroscopy. The results demonstrate that the major component has the following novel structure: NeuAc-alpha 2-6Gal beta 1-4GlcNAc beta 1-2[NeuAc alpha 2-3Gal beta 1- 4GlcNAc beta 1-4]-Man alpha 1-3[NeuAc alpha 2-3(SO4-6)Gal beta 1- 4-GlcNAc beta 1-2Man alpha 1-6]-Man beta 1-4GlcNAc beta 1- 4[Fuc alpha 1-6]GlcNAc-o1.  相似文献   

9.
10.
Cell-matrix interactions are assumed to be important in regulating differentiation and tumor cell growth; however, the precise roles of individual matrix receptors in producing cellular responses are still unclear. We have previously described the alpha v beta 6 integrin, an epithelial cell fibronectin receptor expressed in many carcinoma cell lines. Here we show that heterologous expression of alpha v beta 6 in a human colon carcinoma cell line (SW480) enhances the proliferative capacity of these cells, both in vitro and in vivo in nude mice. This property of alpha v beta 6 correlates with the presence of an 11-amino acid region at the COOH terminus of the beta 6 cytoplasmic domain. This 11-amino acid sequence is required for the growth stimulatory effect, but not for other functions of the beta 6 cytoplasmic domain, such as promoting cell adhesion and focal contact localization.  相似文献   

11.
Nabi  IR; Dennis  JW 《Glycobiology》1998,8(9):947-953
The increased polylactosamine glycosylation of LAMP-2 in MDCK cells cultured for 1 day relative to cells cultured for 3 days has been correlated with its slower rate of Golgi transit (Nabi and Rodriguez- Boulan, 1993, Mol. Biol. Cell., 4, 627-635). To determine if the differential polylactosamine glycosylation of LAMP-2 is a consequence of glycosyltransferase expression levels, the activities of beta1- 6GlcNAc-TV, beta1-3GlcNAc-T(i), beta1-2GlcNAc-TI, beta1, 4Gal-T, alpha2- 6sialyl-T, and alpha2-3sialyl-T were assayed and no significant differences in the activities of these enzymes in 1 and 3 day cell extracts were detected. During MDCK epithelial polarization, the Golgi apparatus undergoes morphological changes and apiconuclear Golgi networks were more evident in 3 day cells. Treatment with nocodazole disrupted Golgi networks and generated numerous Golgi clusters in both 1 day and 3 day cells. In the presence of nocodazole the differential migration of LAMP-2 in 1 and 3 day MDCK cells was maintained and could be eliminated by treatment with endo-beta-galactosidase, indicating that gross Golgi morphology did not influence the extent of LAMP-2 polylactosamine glycosylation. Nocodazole treatment did, however, result in the faster migration of LAMP-2 which was not due to modification of core N-glycans as the precursor form of the glycoprotein migrated with an identical molecular size. Following incubation at 20 degrees C, which prevents the exit of proteins from the trans-Golgi network, the molecular size of LAMP-2 increased to a similar extent in both 1 and 3 day MDCK cells. Extending the time of incubation at 20 degrees C did not influence the size of LAMP-2, demonstrating that its glycosylation is modified not by its retention within the Golgi but rather by its equivalent slower Golgi passage at the lower temperature in both 1 and 3 day cells. An identical effect was observed in nocodazole treated cells, demonstrating that Golgi residence time determines the extent of LAMP-2 polylactosamine glycosylation, even in isolated Golgi clusters.   相似文献   

12.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

13.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

14.
An enzyme has been found in Triton-treated rat liver Golgi membranes which trims Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1-3Man. By removing a glucosylmannose disaccharide and yielding only one Man8GlcNAc isomer, this endo-alpha-D-mannosidase provides a processing route alternative to the sequential actions of alpha-glucosidase II and alpha-mannosidase I. The endomannosidase was fully active in the presence of 1-deoxynojirimycin and EDTA which inhibited exoglycosidase release of glucose and mannose, respectively, and these agents were, therefore, included in the standard assay. The specific activity of the endomannosidase was found to be 69-fold greater in Golgi than in rough endoplasmic reticulum (RER) membranes, and Golgi-RER mixing experiments excluded the possibility that the low activity in the RER was the result of some inhibitor present in this fraction. The neutral pH optimum (approximately 7.0) of the enzyme was consistent with a role in N-linked oligosaccharide processing. The existence of an endo-alpha-D-mannosidase pathway for glucose removal could provide an explanation for the incomplete block in oligosaccharide processing which is observed in cells with inhibited or deficient alpha-glucosidase.  相似文献   

15.
Golgi alpha-mannosidase II is an enzyme that processes the intermediate oligosaccharide Gn(1)M(5)Gn(2) to Gn(1)M(3)Gn(2) during biosynthesis of N-glycans. Previously, we isolated a cDNA encoding a protein homologous to alpha-mannosidase II and designated it alpha-mannosidase IIx. Here, we show by immunocytochemistry that alpha-mannosidase IIx resides in the Golgi in HeLa cells. When coexpressed with alpha-mannosidase II, alpha-mannosidase IIx colocalizes with alpha-mannosidase II in COS cells. A protein A fusion of the catalytic domain of alpha-mannosidase IIx hydrolyzes a synthetic substrate, 4-umbelliferyl-alpha-D-mannoside, and this activity is inhibited by swainsonine. [(3)H]glucosamine-labeled Chinese hamster ovary cells overexpressing alpha-mannosidase IIx show a reduction of M(6)Gn(2) and an accumulation of M(4)Gn(2). Structural analysis identified M(4)Gn(2) to be Man alpha 1-->6(Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc. The results suggest that alpha-mannosidase IIx hydrolyzes two peripheral Man alpha 1-->6 and Man alpha 1-->3 residues from [(Man alpha 1-->6)(Man alpha 1-->3)Man alpha 1-->6](Man alpha 1-->2Man alpha 1-->3)Man beta 1-->4GlcNAc beta 1-->4GlcNAc, during N-glycan processing.  相似文献   

16.
Golgi and secreted galactosyltransferase   总被引:11,自引:0,他引:11  
Galactosyltransferase (GT) belongs to the glycosyltransferases. In several tissues and cell lines, the enzyme is localized by immunocytochemistry to the two to three trans cisternae of the Golgi complex and may thus be considered a specific membrane component of this type of endomembrane. As a consequence, it is the most common Golgi "marker" enzyme in cell fractionation studies. Study of its biosynthesis, membrane orientation, and turnover in several tissues and cultured cell lines has broadened our knowledge about Golgi function itself. The enzyme is oriented towards the lumen of the cisternal space. In this orientation, it catalyzes the transfer of galactose to glycoprotein-bound acetylglucosamine and, in the presence of alpha-lactalbumin, to glucose, as shown in the Golgi complex of mammary gland epithelial cells. The enzymatic properties of GT are well known. The metabolism of GT has been extensively studied in HeLa and human hepatoma cells. The enzyme is synthesized in the rough endoplasmic reticulum (RER) and provided with one N-linked oligosaccharide and palmitate residues. In the Golgi complex, terminal sugars are attached to the N-linked oligosaccharide and extensive O-glycosylation takes place. The half-life of the enzyme is about 20 hr, after which a soluble form appears in the culture medium. Release of GT into the medium is observed in all cell lines studied. This phenomenon is in accordance with the presence of soluble GT in body fluids such as serum, ascites, milk, and saliva. In patients suffering from ovarian and breast cancer, increased levels of GT enzyme activity have been reported. Whether extracellular GT is of biological significance is still a point of discussion.  相似文献   

17.
The gonadotropins luteinizing hormone, follicle-stimulating hormone, and human chorionic gonadotropin are composed of two noncovalently linked subunits, alpha and beta. The alpha subunit, identical in all three hormones, is produced in excess over the unique beta subunits by pituitary and placenta, and is secreted as uncombined, or free subunit. Free alpha subunit from both tissues has a larger molecular weight than the dimer form. In bovine pituitary an extra O-linked oligosaccharide is added to free alpha subunit, and this modification has recently been detected at an analogous position (threonine 39) on human alpha subunit secreted by choriocarcinoma cells. To assess the contribution of N-linked and O-linked oligosaccharides to the heterogeneity of human free alpha subunit, we have compared free alpha with human chorionic gonadotropin alpha secreted by explants and cultured cytotrophoblasts of human first trimester placenta. We have also examined the free and combined forms of human alpha subunit expressed in transfected C-127 mouse mammary tumor cells. Processing of the alpha subunit in placental and C-127 cells was similar. Tryptic mapping of placental-derived and transfected alpha subunits indicated that O-glycosylation at threonine 39 was not a major modification. In the presence of the oligosaccharide processing inhibitor swainsonine the difference in size between the free and combined forms of alpha was eliminated in both placental and C-127 cells, indicating that the two forms of alpha differed in their N-linked oligosaccharides. Furthermore, the oligosaccharides of free alpha subunits from placental and transfected cells were resistant to endoglycosidase H, but the combined forms of alpha were partially sensitive to the enzyme. Thus, in human first trimester placenta and mouse C-127 cells, combination of alpha with human chorionic gonadotropin beta alters the processing of N-linked oligosaccharides on alpha subunit.  相似文献   

18.
A new beta1,4-N-acetylglucosaminyltransferase (GnT) responsible for the formation of branched N-linked complex-type sugar chains has been purified 64,000-fold in 16% yield from a homogenate of hen oviduct by column chromatography procedures using Q-Sepharose FF, Ni(2+)-chelating Sepharose FF, and UDP-hexanolamine-agarose. This enzyme catalyzes the transfer of GlcNAc from UDP-GlcNAc to tetraantennary oligosaccharide and produces pentaantennary oligosaccharide with the beta1-4-linked GlcNAc residue on the Manalpha1-6 arm. It requires a divalent cation such as Mn(2+) and has an apparent molecular weight of 72,000 under nonreducing conditions. The enzyme does not act on biantennary oligosaccharide (GnT I and II product), and beta1,6-N-acetylglucosaminylation of the Manalpha1-6 arm (GnT V product) is essential for its activity. This clearly distinguishes it from GnT IV, which is known to generate a beta1-4-linked GlcNAc residue only on the Manalpha1-3 arm. Based on these findings, we conclude that this enzyme is UDP-GlcNAc:GlcNAcbeta1-6(GlcNAcbeta1-2)Manalpha1-R [GlcNAc to Man]-beta1,4-N-acetylglucosaminyltransferase VI. This is the only known enzyme that has not been previously purified among GnTs responsible for antenna formation on the cores of N-linked complex-type sugar chains.  相似文献   

19.
The nicotinic acetylcholine receptor has a subunit stoichiometry of alpha 2 beta gamma delta; all 5 subunits contain N-linked oligosaccharides. We investigated what role trimming of the oligosaccharides played in the post-translational processing of the subunits and assembly of the receptor by examining the receptor synthesized in the presence of an inhibitor of oligosaccharide trimming, 1-deoxynojirimycin. BC3H-1 cells express one-third fewer receptors when grown in the presence of 1-deoxynojirimycin. The receptor subunits that are expressed have decreased mobility by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating an inhibition of oligosaccharide trimming. In control cells, 40% of the translated alpha subunit acquires the capacity to bind alpha-bungarotoxin with a half-time of 40 min before assembly with the other subunits; the rest is rapidly degraded. In 1-deoxynojirimycin-treated cells approximately the same amount of alpha subunit is translated as in control cells, but that alpha subunit is degraded more rapidly, and only 25% acquires the capacity to bind alpha-bungarotoxin. From these results, we conclude that oligosaccharide processing either may aid in protecting the alpha subunit primary translation product from degradation or may be required for the conformational change or other post-translational modification(s) necessary for formation of the alpha-bungarotoxin binding form of the alpha subunit, which is then protected from proteolytic degradation. The cell surface receptor that is expressed in the presence of 1-deoxynojirimycin, however, is not altered in its affinity for cholinergic ligands. Thus, we conclude that differential N-linked oligosaccharide trimming of the 2 alpha subunits does not appear to play a part in the differences in affinities of the 2 alpha subunits for cholinergic ligands.  相似文献   

20.
In this report we describe the alteration of the N-linked oligosaccharide terminal sequences of Chinese hamster ovary cell glycoproteins by expression of a beta-galactoside alpha 2,6-sialyltransferase cDNA. While wild type cells normally produce sugar chains terminating in the NeuAc alpha 2,3Gal linkage, the expressed enzyme competes with the endogenous sialyltransferase to attach an alternative terminal sequence, NeuAc alpha 2,6Gal. Subcellular localization of the NeuAc alpha 2,6Gal product by lectin-gold electron microscopy revealed localization throughout the Golgi apparatus cis to trans, post-Golgi membranes and vesicular structures. The results demonstrate the potential for purposefully altering terminal carbohydrate structures in vivo by "mis-expressing" terminal glycosyltransferases that compete with the endogenous enzyme normally produced by the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号