首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
植物在非生物胁迫下会产生一系列的形态、生理生化和分子水平上的适应性变化,尤其是非生物胁迫会引起植物体内的蛋白磷酸酶2C(PP2C)基因表达的改变,从而诱导植物合成相关的蛋白以适应胁迫。植物中有不同类型的PP2C亚群,各种PP2C亚群能够通过不同的信号途径参与胁迫应答,因此在植物响应非生物胁迫的过程中发挥重要作用。综述了植物PP2C在非生物胁迫信号通路中的作用机制。  相似文献   

2.
活性氧在植物非生物胁迫响应中功能的研究进展   总被引:1,自引:0,他引:1  
活性氧(ROS)是植物在响应非生物胁迫过程中不可或缺的组成部分。适量的ROS可通过参与信号转导途径调节植物响应多种胁迫,而过量的ROS致使植物处于氧化应激状态。植物中每个亚细胞室都含有一套独立的ROS产生和清除途径,各自的ROS稳态水平及氧化还原状态也在不断发生变化,表现出各自独特的ROS特征。本文综述了近年来有关ROS在植物非生物胁迫响应过程中功能的研究进展及其在介导快速系统信号转导中的作用,为深入研究ROS在植物非生物胁迫响应中的功能提供参考。  相似文献   

3.
植物蛋白激酶与作物非生物胁迫抗性的研究   总被引:3,自引:0,他引:3  
干旱、盐碱、高温等非生物逆境胁迫严重影响作物生长发育、产量和品质。在遭受非生物逆境的威胁时,植物通过信号受体,可感知、转导胁迫信号,启动一系列抗逆相关基因的表达,最终缓解或抵御非生物逆境胁迫对植物造成的危害。其中,蛋白激酶和蛋白磷酸酯酶的磷酸化/去磷酸化作用在植物感受外界胁迫信号的分子传递过程中起到开关的作用。正常情况下,蛋白激酶磷酸化开启信号转导途径,启动相应的抗逆基因表达反应;当信号消失后,蛋白激酶去磷酸化将信号转导途径关闭,达到调控植物正常生长的目的。因此,蛋白激酶在调控感受胁迫信号、启动各种非生物逆境胁迫响应中起到了极其重要的作用。近年来,对植物蛋白激酶参与非生物胁迫响应的研究倍受关注。本文阐述了不同类型蛋白激酶在改良作物非生物胁迫抗性上的应用,为进一步研究提供资料。  相似文献   

4.
赤霉素在非生物胁迫中的作用   总被引:1,自引:0,他引:1  
赤霉素作为重要的植物激素,在植物种子萌发、叶片伸展、茎和根的伸长、开花调控和果实形成等方面均起到了调控的作用。近年来,越来越多的研究证实赤霉素还参与了植物耐受诸多非生物胁迫的过程。在低温、高盐、干旱和高渗等环境胁迫下,植物可通过赤霉素减少的方式使生长减缓从而适应外界环境;与此相反,植物也会通过赤霉素的增加产生逃离机制,从而摆脱水淹等环境胁迫。另外,赤霉素信号途径中的DELLAs会与ABA信号通路中的某些组分共同参与了植物耐受非生物胁迫的调控过程。对赤霉素调控参与非生物胁迫响应过程的研究成果进行了整理和汇总,试图通过讨论相关机理机制,明确赤霉素与非生物胁迫响应的未来研究方向。  相似文献   

5.
非生物胁迫相关NAC转录因子的结构及功能   总被引:2,自引:0,他引:2  
NAC是植物特有的一类转录因子,参与植物多个生长发育过程,还参与植物对逆境胁迫的响应。本文对非生物胁迫相关NAC转录因子的结构特征、功能预测、表达特性、在转基因植物中的作用及调控路径进行综述。非生物胁迫相关NAC转录因子具有典型的NAc胁迫亚家族结构特征,根据这些结构特征可以预测其功能;非生物胁迫相关NAc转录因子能响应多种非生物胁迫,其转基因过表达大多能使转基因植物提高一种或几种胁迫耐受性;非生物胁迫相关NAc转录因子有着复杂的调控路径。这些NAc转录因子可用于提高转基因植物的逆境耐受性。  相似文献   

6.
金亮  兰大伟 《生命科学》2005,17(4):346-350
在植物和动物的生长发育过程中,甾醇和肽类激素被广泛地作为信号转导分子来使用。在植物中,油菜素甾醇类(BRs)信号由细胞表面受体激酶BRI1感知,该受体与动物的甾醇受体有明显的区别。对BR信号转导途径中组分的鉴定表明,该途径与其地动物和植物信号转导途径具有类似性。近来的研究证实番茄BRI1(tBRIl)能感知BR和肽类激素系统素。于是,关于受体一配体特异性的分子机制及进化的问题便产生了。本文就目前关于BRs信号转导中受体的研究进展作一综述。  相似文献   

7.
MAPK级联途径参与ABA信号转导调节的植物生长发育过程   总被引:2,自引:0,他引:2  
植物激素ABA参与调控植物生长发育和生理代谢以及多种胁迫应答过程,促分裂原活化蛋白激酶(MAPK)级联途径应答于多种生物和非生物胁迫,广泛参与调控植物的生长发育。MAPK级联途径与ABA信号转导协同作用参与调控植物种子萌发、气孔运动和生长发育,本文主要归纳了植物中受ABA调控激活的MAPK级联途径成员,阐述了它们参与ABA信号转导调控植物生理反应和生长发育的过程,并对MAPK级联途径与ABA信号转导的研究方向作出了展望,指出对MAPK下游底物的筛选是完善MAPK级联途径的重要组成部分。  相似文献   

8.
水杨酸对非生物胁迫下植物抗氧化能力的影响   总被引:1,自引:0,他引:1  
水杨酸(SA)在植物体内具有重要生理作用,除了参与抵抗生物胁迫信号转导外,还参与植物响应非生物胁迫。外源SA在植物应对盐碱、重金属、高低温和干旱等胁迫过程中发挥关键作用。综述了SA调控的抗氧化系统对植物响应非生物胁迫的影响,重点讨论了SA对抗氧化酶和非酶物质的诱导作用。  相似文献   

9.
植物非生物胁迫诱导启动子顺式作用元件的研究方法   总被引:1,自引:0,他引:1  
非生物胁迫严重影响植物生长发育,降低作物产量。植物通过各种途径忍受或抵抗非生物胁迫,主要表现是各种抗非生物胁迫基因的表达。基因表达受其上游启动子及转录因子的调控,目前对抗非生物胁迫诱导启动子顺式作用元件及转录因子的研究成为热点。本文综述了植物非生物胁迫诱导启动子顺式作用元件及转录因子的研究方法,并展望了顺式作用元件及转录因子研究的方向及前景。  相似文献   

10.
植物甾醇是一类重要的生理活性物质,对植物的生长发育具有重要作用,对响应植物逆境胁迫也具有重要功能.植物甾醇是细胞膜和脂质筏的重要组分,与膜的稳定性密切相关,主要通过甾醇含量的相对变化维持膜的稳定性及影响脂质筏的生物功能响应逆境胁迫.植物甾醇作为信号分子参与逆境胁迫中的信号传导,油菜素内酯类(BRs)是植物甾醇合成途径的重要产物,作为一种重要的信号分子调控植物甾醇合成酶基因的表达以响应逆境胁迫.  相似文献   

11.
12.

Background  

Brassinosteroids (BRs) play crucial roles in plant development and also promote tolerance to a range of abiotic stresses. Although much has been learned about their roles in plant development, the mechanisms by which BRs control plant stress responses and regulate stress-responsive gene expression are not fully known. Since BR interacts with other plant hormones, it is likely that the stress tolerance conferring ability of BR lies in part in its interactions with other stress hormones.  相似文献   

13.
Brassinosteroid-Mediated Stress Responses   总被引:25,自引:3,他引:22  
Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds with wide-ranging biological activity that offer the unique possibility of increasing crop yields through both changing plant metabolism and protecting plants from environmental stresses. In recent years, genetic and biochemical studies have established an essential role for BRs in plant development, and on this basis BRs have been given the stature of a phytohormone. A remarkable feature of BRs is their potential to increase resistance in plants to a wide spectrum of stresses, such as low and high temperatures, drought, high salt, and pathogen attack. Despite this, only a few studies aimed at understanding the mechanism by which BRs promote stress resistance have been undertaken. Studies of the BR signaling pathway and BR gene-regulating properties indicate that there is cross-talk between BRs and other hormones, including those with established roles in plant defense responses such as abscisic acid, jasmonic acid, and ethylene. Recent studies aimed at understanding how BRs modulate stress responses suggest that complex molecular changes underlie BR-induced stress tolerance in plants. Analyses of these changes should generate exciting results in the future and clarify whether the ability of BRs to increase plant resistance to a range of stresses lies in the complex interactions of BRs with other hormones. Future studies should also elucidate if BRI1, an essential component of the BR receptor, directly participates in stress response signaling through interactions with ligands and proteins involved in plant defense responses.  相似文献   

14.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

15.
16.
17.
18.
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids — including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids — also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.  相似文献   

19.
20.
Sensing environmental changes and initiating a gene expression response are important for plants as sessile autotrophs. The ability of epigenetic status to alter rapidly and reversibly could be a key component to the flexibility of plant responses to the environment. The involvement of epigenetic mechanisms in the response to environmental cues and to different types of abiotic stresses has been documented. Different environmental stresses lead to altered methylation status of DNA as well as modifications of nucleosomal histones. Understanding how epigenetic mechanisms are involved in plant response to environmental stress is highly desirable, not just for a better understanding of molecular mechanisms of plant stress response but also for possible application in the genetic manipulation of plants. In this review, we highlight our current understanding of the epigenetic mechanisms of chromatin modifications and remodeling, with emphasis on the roles of specific modification enzymes and remodeling factors in plant abiotic stress responses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号