首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
JAK2 (Janus kinase-2) overactivity contributes to survival of tumor cells and the V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Tumor cell survival depends on availability of glucose. Concentrative cellular glucose uptake is accomplished by Na+ coupled glucose transport through SGLT1 (SLC5A1), which may operate against a chemical glucose gradient and may thus be effective even at low extracellular glucose concentrations. The present study thus explored whether JAK2 activates SGLT1. To this end, SGLT1 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of glucose to the extracellular bath generated a current (Ig), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Kinetic analysis revealed that coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The stimulating effect of JAK2 expression was abrogated by preincubation with the JAK2 inhibitor AG490. Chemiluminescence analysis revealed that JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ig during inhibition of carrier insertion by brefeldin A was similar in the absence and presence of JAK2. Thus, JAK2 fosters insertion rather than inhibiting retrieval of carrier protein into the cell membrane. In conclusion, JAK2 upregulates SGLT1 activity which may play a role in the effect of JAK2 during ischemia and malignancy.  相似文献   

2.
The Na+-coupled glucose transporter SGLT1 (SLC5A1) accomplishes concentrative cellular glucose uptake even at low extracellular glucose concentrations. The carrier is expressed in renal proximal tubules, small intestine and a variety of nonpolarized cells including several tumor cells. The present study explored whether SGLT1 activity is regulated by caveolin-1, which is known to regulate the insertion of several ion channels and carriers in the cell membrane. To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of caveolin-1 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes, but not in oocytes injected with water or caveolin-1 alone, the addition of glucose to the extracellular bath generated an inward current (Ig), which was increased following coexpression of caveolin-1. Kinetic analysis revealed that caveolin-1 increased maximal Ig without significantly modifying the glucose concentration required to trigger half maximal Ig (KM). According to chemiluminescence and confocal microscopy, caveolin-1 increased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of Ig, which was similar in the absence and presence of caveolin-1. In conclusion, caveolin-1 up-regulates SGLT1 activity by increasing carrier protein abundance in the cell membrane, an effect presumably due to stimulation of carrier protein insertion into the cell membrane.  相似文献   

3.
Janus-activated kinase-2 (JAK2) participates in the regulation of the Na+-coupled glucose transporter SGLT1 and the Na+-coupled amino acid transporter SLC6A19. Concentrative cellular creatine uptake is similarly accomplished by Na+-coupled transport. The carrier involved is SLC6A8 (CreaT). The present study thus explored whether JAK2 regulates the activity of SLC6A8. To this end, cRNA encoding SLC6A8 was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, constitutively active V617FJAK2 or inactive K882EJAK2. Electrogenic creatine transport was determined in those oocytes by dual-electrode voltage-clamp experiments. In oocytes injected with cRNA encoding SLC6A8 but not in oocytes injected with water or with cRNA encoding JAK2 alone, addition of 1 mM creatine to the extracellular bath generated an inward current (I crea). In SLC6A8 expressing oocytes I crea was significantly decreased by coexpression of JAK2 or V617FJAK2 but not by coexpression of K882EJAK2. According to kinetic analysis, coexpression of JAK2 decreased the maximal transport rate without significantly modifying the affinity of the carrier. In oocytes expressing SLC6A8 and V617FJAK2 I crea was gradually increased by the JAK2 inhibitor AG490 (40 μM). In SLC6A8 and JAK2 coexpressing oocytes the decline of I crea following disruption of carrier insertion with brefeldin A (5 μM) was similar in the absence and presence of JAK2. In conclusion, JAK2 is a novel regulator of the creatine transporter SLC6A8, which downregulates the carrier, presumably by interference with carrier protein insertion into the cell membrane.  相似文献   

4.
The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK is a powerful regulator of ion transport. The study explored whether SPAK similarly regulates nutrient transporters, such as the Na+-coupled glucose transporter SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active T233ESPAK, WNK-insensitive T233ASPAK or catalytically inactive D212ASPAK, and electrogenic glucose transport determined by dual-electrode voltage-clamp experiments. Moreover, Ussing chamber was employed to determine the electrogenic glucose transport in intestine from wild-type mice (spak wt/wt) and from gene-targeted mice carrying WNK-insensitive SPAK (spak tg/tg). In SGLT1-expressing oocytes, but not in water-injected oocytes, the glucose-dependent current (I g) was significantly decreased following coexpression of wild-type SPAK and T233ESPAK, but not by coexpression of T233ASPAK or D212ASPAK. Kinetic analysis revealed that SPAK decreased maximal I g without significantly modifying the glucose concentration required for halfmaximal I g (K m). According to the chemiluminescence experiments, wild-type SPAK but not D212ASPAK decreased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of I g, which was similar in the absence and presence of SPAK, suggesting that SPAK did not accelerate the retrieval of SGLT1 protein from the cell membrane but rather down-regulated carrier insertion into the cell membrane. Intestinal electrogenic glucose transport was significantly lower in spak wt/wt than in spak tg/tg mice. In conclusion, SPAK is a powerful negative regulator of SGLT1 protein abundance in the cell membrane and thus of electrogenic glucose transport.  相似文献   

5.
《Molecular membrane biology》2013,30(2-3):137-144
Abstract

AMP-activated protein kinase (AMPK), a serine/threonine kinase activated upon energy depletion, stimulates energy production and limits energy utilization. It has previously been shown to enhance cellular glucose uptake through the GLUT family of facilitative glucose transporters. The present study explored the possibility that AMPK may regulate Na+-coupled glucose transport through SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with and without AMPK and electrogenic glucose transport determined by dual electrode voltage clamping experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or expressing constitutively active γR70QAMPK (α1β1γ1(R70Q)) alone, the addition of glucose to the extracellular bath generated a current (Ig), which was half maximal (KM) at ≈ 650 μM glucose concentration. Coexpression of γR70QAMPK did not affect KM but significantly enhanced the maximal current (≈ 1.7 fold). Coexpression of wild type AMPK or the kinase dead αK45RAMPK mutant (α1(K45R)β1γ1) did not appreciably affect Ig. According to confocal microscopy and Western Blotting, AICAR (1 mM), phenformin (1 mM) and A-769662 (10 μM) enhanced the SGLT1 protein abundance in the cell membrane of Caco2 cells suggesting that AMPK activity may increase membrane translocation of SGLT1. These observations support a role for AMPK in the regulation of Na+-coupled glucose transport.  相似文献   

6.
Objectives : Serum‐ and glucocorticoid‐inducible kinase 1 (SGK1) inhibits the ubiquitin ligase neuronal cell expressed developmentally downregulated 4‐2 (Nedd4‐2), which retards the retrieval of the epithelial Na+ channel ENaC. Accordingly, SGK1 enhances ENaC abundance in the cell membrane. The significance of this effect is shown by an association of an E8CC/CT;I6CC polymorphism in the SGK1 gene with increased blood pressure. However, strong expression of SGK1 in enterocytes not expressing ENaC points to further functions of SGK1. This study was performed to test for regulation of Na+‐coupled glucose transporter 1 (SGLT1) by Nedd4‐2, SGK1, and/or the related kinases SGK3 and PKB. Additional studies searched for an association of the SGK1 gene with BMI. Research Methods and Procedures : mRNA encoding SGLT1, wild‐type Nedd4‐2, inactive C938SNedd4‐2, wild type SGK1, constitutively active S422DSGK1 or inactive K127NSGK1, wild‐type SGK3, and constitutively active T308DS473DPKB or inactive T308AS473APKB were injected into Xenopus oocytes, and glucose transport was quantified from glucose‐induced current (Iglc). BMI was determined in individuals with or without the E8CC/CT;I6CC polymorphism. Results: Iglc was significantly decreased by coexpression of Nedd4‐2 but not of C938SNedd4‐2. Coexpression of SGK1, S422DSGK1, SGK3, or T308DS473DPKB, but not of K127NSGK1 or T308AS473APKB, enhanced Iglc and reversed the effect of Nedd4‐2. SGK1 and SGK3 phosphorylated Nedd4‐2. Deletion of the SGK/PKB phosphorylation sites in Nedd4‐2 blunted the kinase effects. BMI was significantly (p < 0.008) greater in individuals with the E8CC/CT;I6CC polymorphism than in individuals without. Discussion : Overactivity of SGK1 may lead not only to excessive ENaC activity and hypertension but also to enhanced SGLT1 activity and obesity.  相似文献   

7.
The Na(+), glucose cotransporter SGLT1 (SLC5A1) accomplishes Na(+)-dependent concentrative cellular glucose uptake. SGLT1 activity is enhanced by the serum and glucocorticoid inducible kinase SGK1. As shown recently, the stimulating effect of protein kinase B on the glucose carrier GLUT4 involves the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments thus explored whether PIKfyve is similarly involved in the SGK1-dependent regulation of SLC5A1. In Xenopus oocytes expressing SLC5A1 but not in water injected oocytes glucose induced a current which was significantly enhanced by coexpression of PIKfyve. The effect of PIKfyve on SLC5A1 was blunted by additional coexpression of the inactive mutant of the serum and glucocorticoid inducible kinase (K119N)SGK1 and mimicked by coexpression of constitutively active (S422D)SGK1. The stimulating effect of PIKfyve was abrogated by replacement of the serine in the SGK consensus sequence by alanine ((S138A)PIKfyve). Moreover, coexpression of (S138A)PIKfyve significantly blunted the effect of SGK1 on SLC5A1 activity. The observations disclose that PIKfyve participates in the SGK1-dependent regulation of SLC5A1.  相似文献   

8.
JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na+ coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (Ile), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 μM) resulted in a gradual decline of Ile. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ile following inhibition of carrier insertion by brefeldin A (5 μM) was similar in the absence and presence of JAK2 indicating that JAK2 stimulates carrier insertion into rather than inhibiting carrier retrival from the cell membrane. In conclusion, JAK2 up-regulates SLC6A19 activity which may foster amino acid uptake into JAK2 expressing cells.  相似文献   

9.
USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target proteins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the other hand, ubiquitination participates in the regulation of several ion channels and transporters. USP18 sensitivity of transporters has, however, never been reported. The present study thus explored, whether USP18 modifies the activity of the peptide transporters PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin ligase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM) was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 significantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpression of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly increased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular functions include activity of the peptide transporters PEPT1 and PEPT2.  相似文献   

10.
The Na+,glutamate cotransporter EAAT3 is expressed in a wide variety of tissues. It accomplishes transepithelial transport and the cellular uptake of acidic amino acids. Regulation of EAAT3 activity involves a signaling cascade including the phosphatidylinositol-3 (PI3)-kinase, the phosphoinositide dependent kinase PDK1, and the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3). The present experiments explored whether PIKfyve participates in the regulation of EAAT3 activity. To this end, EAAT3 was expressed in Xenopus oocytes with or without SGK1 and/or PIKfyve and glutamate-induced current (Iglu) determined by dual electrode voltage clamp. In Xenopus oocytes expressing EAAT3 but not in water injected oocytes glutamate induced an inwardly directed Iglu. Coexpression of either, SGK1 or PIKfyve, significantly enhanced Iglu in EAAT3 expressing oocytes. The increased Iglu was paralleled by increased EAAT3 protein abundance in the oocyte cell membrane. Iglu and EAAT3 protein abundance were significantly larger in oocytes coexpressing EAAT3, SGK1 and PIKfyve than in oocytes expressing EAAT3 and either, SGK1 or PIKfyve, alone. Coexpression of the inactive SGK1 mutant K127NSGK1 did not significantly alter Iglu in EAAT3 expressing oocytes and completely reversed the stimulating effect of PIKfyve coexpression on Iglu. The stimulating effect of PIKfyve on Iglu was abolished by replacement of the serine by alanine in the SGK consensus sequence (S318APIKfyve). Moreover, additional coexpression of S318APIKfyve significantly blunted Iglu in Xenopus oocytes coexpressing SGK1 and EAAT3. The observations demonstrate that PIKfyve participates in EAAT3 regulation likely downstream of SGK1.  相似文献   

11.
The serum- and glucocorticoid-inducible kinase SGK1 and the protein kinase PKB/Akt presumably phosphorylate and, by this means, activate the mammalian phosphatidylinositol-3-phosphate-5-kinase PIKfyve (PIP5K3), which has in turn been shown to regulate transporters and channels. SGK1-regulated channels include the Ca2+ channel TRPV6, which is expressed in a variety of epithelial and nonepithelial cells including tumor cells. SGK1 and protein kinase B PKB/Akt foster tumor growth. The present study thus explored whether TRPV6 is regulated by PIKfyve. TRPV6 was expressed in Xenopus laevis oocytes with or without additional coexpression of constitutively active S422DSGK1, constitutively active T308D,S473DPKB, wild-type PIKfyve, and S318APIKfyve lacking the SGK1 phosphorylation site. TRPV6 activity was determined from the current (ICa) resulting from TRPV6-induced Ca2+ entry and subsequent activation of Ca2+-sensitive endogenous Cl? channels. TRPV6 protein abundance in the cell membrane was determined utilizing immunohistochemistry and Western blotting. In TRPV6-expressing oocytes IH was increased by coexpression of S422DSGK1 and by T308D,S473DPKB. Coexpression of wild-type PIKfyve further increased IH in TRPV6 + S422DSGK1-expressing oocytes but did not significantly modify ICa in oocytes expressing TRPV6 alone. S318APIKfyve failed to significantly modify ICa in the presence and absence of S422DSGK1. S422DSGK1 increased the TRPV6 protein abundance in the cell membrane, an effect augmented by additional expression of wild-type PIKfyve. We conclude that PIKfyve participates in the regulation of TRPV6.  相似文献   

12.
13.
To characterize the sugar translocation pathway of Na+/glucose cotransporter type 1 (SGLT1), a chimera was made by substituting the extracellular loop between transmembrane domain (TM) 12 and TM13 of Xenopus SGLT1-like protein (xSGLT1L) with the homologous region of rabbit SGLT1. The chimera was expressed in Xenopus oocytes and its transport activity was measured by the two-microelectrode voltage-clamp method. The substrate specificity of the chimera was different from those of xSGLT1L and SGLT1. In addition the chimera's apparent Michaelis-Menten constant (Km) for myo-inositol, 0.06 mM, was about one fourth of that of xSGLT1L, 0.25 mM, while the chimera's apparent Km for d-glucose, 0.8 mM, was about one eighth of that of xSGLT1L, 6.3 mM. Our results suggest that the extracellular loop between TM12 and TM13 participates in the sugar transport of SGLT1.  相似文献   

14.
Using cotransporters as drug delivery vehicles is a topic of continuing interest. We examined glucose derivatives containing conjugated aromatic rings using two isoforms of the Na+/glucose cotransporter: human SGLT1 (hSGLT1) and pig SGLT3 (pSGLT3, SAAT1). Our studies indicate that there is similarity between SGLT1 and SGLT3 in the overall architecture of the vestibule leading to the sugar-binding site but differences in translocation pathway interactions. Indican was transported by hSGLT1 with higher affinity (K0.5 0.06 mm) and 2-naphthylglucose with lower affinity (K0.5 0.5 mm) than α-methyl-d-glucopyranoside (αMDG, 0.2 mm). Both were poorly transported (maximal velocities, I max , 14% and 8% of αMDG). Other compounds were inhibitors (K i s 1–13 mm). In pSGLT3, indican and 2-naphthylglucose were transported with higher affinity than αMDG (K0.5s 0.9, 0.2 and 2.5 mm and relative I max s of 80, 25 and 100%). Phenylglucose and arbutin were transported with higher I max s (130 and 120%) and comparable K0.5s (8 and 1 mm). Increased affinity of indican relative to αMDG suggests that nitrogen in the pyrrole ring is favorable in both transporters. Higher affinity of 2-naphthylglucose for pSGLT3 than hSGLT1 suggests more extensive hydrophobic/aromatic interaction in pSGLT3 than in hSGLT1. Our results indicate that bulky hydrophobic glucosides can be transported by hSGLT1 and pSGLT3, and discrimination between them is based on steric factors and requirements for H-bonding. This provides information for design of glycosides with potential therapeutic value. Received: 18 February 2000/Revised: 13 April 2000  相似文献   

15.
The kinetics of Na+/d-glucose cotransport (SGLT) were reevaluated in rabbit renal brush border membrane vesicles isolated from the whole kidney cortex using a fast-sampling, rapid-filtration apparatus (FSRFA, US patent #5,330,717) for uptake measurements. Our results confirm SGLT heterogeneity in this preparation, and both high (HAG) and low (LAG) affinity glucose transport pathways can be separated over the 15–30°C range of temperatures. It is further shown that: (i) Na+ is an essential activator of both HAG and LAG; (ii) similar energies of activation can be estimated from the linear Arrhenius plots constructed from the V max data of HAG and LAG, thus suggesting that the lipid composition and/or the physical state of the membrane do not affect much the functioning of SGLT; (iii) similar V max values are observed for glucose and galactose transport through HAG and LAG, thus demonstrating that the two substrates share the same carrier agencies; and (iv) phlorizin inhibits both HAG and LAG competitively and with equal potency (K i = 15 μm). Individually, these data do not allow us to resolve conclusively whether the kinetic heterogeneity of SGLT results from the expression in the proximal tubule of either two independent transporters (rSGLT1 and rSGLT2) or from a unique transporter (rSGLT1) showing allosteric kinetics. Altogether and compared to the kinetic characteristics of the cloned SGLT1 and SGLT2 systems, they do point to a number of inconsistencies that lead us to conclude the latter possibility, although it is recognized that the two alternatives are not mutually exclusive. It is further suggested, from the differences in the K m values of HAG transport in the kidney as compared to the small intestine and SGLT1 cRNA-injected oocytes, that renal SGLT1 activity is somehow modulated, maybe through heteroassociation with (a) regulatory subunit(s) that might also contribute quite significantly to sugar transport heterogeneity in the kidney proximal tubule. Received: 25 October 1995/Revised: 10 June 1996  相似文献   

16.
Janus kinase-2 (JAK2), a signaling molecule mediating effects of various hormones including leptin and growth hormone, has previously been shown to modify the activity of several channels and carriers. Leptin is known to inhibit and growth hormone to stimulate epithelial Na+ transport, effects at least partially involving regulation of the epithelial Na+ channel ENaC. However, no published evidence is available regarding an influence of JAK2 on the activity of the epithelial Na+ channel ENaC. In order to test whether JAK2 participates in the regulation of ENaC, cRNA encoding ENaC was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild type JAK2, gain-of-function V617FJAK2 or inactive K882EJAK2. Moreover, ENaC was expressed with or without the ENaC regulating ubiquitin ligase Nedd4-2 with or without JAK2, V617FJAK2 or K882EJAK2. ENaC was determined from amiloride (50 μM)-sensitive current (I amil) in dual electrode voltage clamp. Moreover, I amil was determined in colonic tissue utilizing Ussing chambers. As a result, the I amil in ENaC-expressing oocytes was significantly decreased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 and Nedd4-2 decreased I amil in ENaC-expressing oocytes to a larger extent than coexpression of Nedd4-2 alone. Exposure of ENaC- and JAK2-expressing oocytes to JAK2 inhibitor AG490 (40 μM) significantly increased I amil. In colonic epithelium, I amil was significantly enhanced by AG490 pretreatment (40 μM, 1 h). In conclusion, JAK2 is a powerful inhibitor of ENaC.  相似文献   

17.
(2S,3R,4R,5S,6R)-2-Aryl-5,5-difluoro-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols and (2S,3R,4R,5S,6R)-2-aryl-5-fluoro-5-methyl-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols were discovered as dual inhibitors of sodium glucose co-transporter proteins (e.g. SGLT1 and SGLT2) through rational drug design, efficient synthesis, and in vitro and in vivo evaluation. Compound 6g demonstrated potent dual inhibitory activities (IC50 = 96 nM for SGLT1 and IC50 = 1.3 nM for SGLT2). It showed robust inhibition of blood glucose excursion in an oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats when dosed at both 1 mg/kg and 10 mg/kg orally. It also demonstrated postprandial glucose control in db/db mice when dosed orally at 10 mg/kg.  相似文献   

18.
Janus kinase 3 (JAK3) contributes to cytokine receptor signaling, confers cell survival and stimulates cell proliferation. The gain of function mutation JAK3A572V is found in acute megakaryoplastic leukemia. Replacement of ATP coordinating lysine by alanine yields inactive JAK3K855A. Most recent observations revealed the capacity of JAK3 to regulate ion transport. This study thus explored whether JAK3 regulates glutamate transporters EAAT1-4, carriers accomplishing transport of glutamate and aspartate in a variety of cells including intestinal cells, renal cells, glial cells, and neurons. To this end, EAAT1, 2, 3, or 4 were expressed in Xenopus oocytes with or without additional expression of mouse wild-type JAK3, constitutively active JAK3A568V or inactive JAK3K851A, and electrogenic glutamate transport was determined by dual electrode voltage clamp. Moreover, Ussing chamber was employed to determine electrogenic glutamate transport in intestine from mice lacking functional JAK3 (jak3 ?/?) and from corresponding wild-type mice (jak3 +/+). As a result, in EAAT1, 2, 3, or 4 expressing oocytes, but not in oocytes injected with water, addition of glutamate to extracellular bath generated an inward current (I g), which was significantly increased following coexpression of JAK3. I g in oocytes expressing EAAT3 was further increased by JAK3A568V but not by JAK3K851A. I g in EAAT3 + JAK3 expressing oocytes was significantly decreased by JAK3 inhibitor WHI-P154 (22 µM). Kinetic analysis revealed that JAK3 increased maximal I g and significantly reduced the glutamate concentration required for half maximal I g (K m). Intestinal electrogenic glutamate transport was significantly lower in jak3 ?/? than in jak3 +/+ mice. In conclusion, JAK3 is a powerful regulator of excitatory amino acid transporter isoforms.  相似文献   

19.
Functional characterization of Na+-d-glucose cotransport in intestine and kidney indicates the existence of heterogeneous Na+-d-glucose cotransport systems. Target size analysis of the transporting unit and model analysis of substrate binding have been performed and proteins have been cloned which mediate (SGLT1) and modulate (RS1) the expression of Na+-d-glucose cotransport. The experiments support the hypothesis that functional Na+-d-glucose cotransport systems in mammals are composed of two SGLT1-type subunits and may contain one or two RS1-type proteins. SGLT1 contains up to twelve membrane-spanning -helices, whereas RS1 is a hydrophilic extracellular protein which is anchored in the brush-border membrane by a hydrophobic -helix at the C-terminus. SGLT1 alone is able to translocate glucose together with sodium; however, RS1 increases the V max of transport expressed by SGLT1. In addition, the biphasic glucose dependence of transport, which is typical for kidney and has been often observed in intestine, was only obtained after coexpression of SGLT1 and RS1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号