首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The family of periplasmic binding proteins (PBPs) is believed to have arisen from a common ancestor and to have differentiated into two types. At first approximation, both types of PBPs have the same fold pattern, reflecting their common origin. However, the connection between the main chains of a type 2 PBP is more complicated than a type 1 PBP's. We have been interested in the possibility that such structural changes affect the folding of PBPs. In this study, we have characterized the folding pathways of MglB (a type 1 PBP) and ArgT (a type 2 PBP) by using urea gradient gel electrophoresis, fast protein size-exclusion liquid chromatography and hydrophobic dye ANS binding assay. We found a distinct difference in folding between these two proteins. The folding of MglB followed a simple two-state transition model, whereas the folding of ArgT was more complicated.  相似文献   

2.
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function.  相似文献   

3.
Chen J  Wang J  Wang W 《Proteins》2004,57(1):153-171
To explore the role of entropy and chain connectivity in protein folding, a particularly interesting scheme, namely, the circular permutation, has been used. Recently, experimental observations showed that there are large differences in the folding mechanisms between the wild-type proteins and their circular permutants. These differences are strongly related to the change in the intrachain connectivity. Some results obtained by molecular dynamics simulations also showed a good agreement with the experimental findings. Here, we use a topology-based free-energy functional method to study the role of the chain connectivity in folding by comparing features of transition states of the wild-type proteins with those of their circular permutants. We concentrate our study on 3 small globular proteins, namely, the alpha-spectrin SH3 domain (SH3), the chymotrypsin inhibitor 2 (CI2), and the ribosomal protein S6, and obtain exciting results that are consistent with the available experimental and simulation results. A heterogeneity of the interaction energies between contacts for protein CI2 and for protein S6 is also introduced, which characterizes the strong interactions between contacts with long loops, as speculated from experiments for protein S6. The comparison between the folding nucleus of the wild-type proteins and those of their circular permutants indicates that chain connectivity affects remarkably the shapes of the energy profiles and thus the folding mechanism. Further comparisons between our theoretical calculated phi(th) values and the experimental observed phi(exp) values for the 3 proteins and their permutants show that our results are in good agreement with experimental ones and that correlations between them are high. These indicate that the free-energy functional method really provides a way to analyze the folding behavior of the circular-permuted proteins and therefore the folding mechanism of the wild-type proteins.  相似文献   

4.
In recent decades, advances in computational methods and experimental biophysical techniques have improved our understanding of protein folding. Although some of these advances have been remarkable, the structural variability of globular proteins usually encountered makes it difficult to extract general features of their folding processes. To overcome this difficulty, experimental and computational studies of the folding of repeat (or modular) proteins are of interest. Because their native structures can be described as linear arrays of the same, repeated, supersecondary structure unit, it is possible to seek  a possibly independent behavior of the different modules without taking into account the intrinsic stability associated with different secondary structure motifs. In this work we have used a Monte Carlo-based simulation to study the folding equilibrium of four repeat proteins belonging to the tetratricopeptide repeat family. Our studies provide new insights into their energy profiles, enabling investigation about the existence of intermediate states and their relative stabilities. We have also performed structural analyses to describe the structure of these intermediates, going through the vast number of conformations obtained from the simulations. In this way, we have tried to identify the regions of each protein in which the modular structure yields a different behavior and, more specifically, regions of the proteins that can stay folded when the rest of the chain has been thermally denatured.  相似文献   

5.
Experiments were designed to explore the tolerance of protein structure and folding to very large insertions of folded protein within a structural domain. Dihydrofolate reductase and beta-lactamase have been inserted in four different positions of phosphoglycerate kinase. The resultant chimeric proteins are all overexpressed, and the host as well as the inserted partners are functional. Although not explicitly designed, functional coupling between the two fused partners was observed in some of the chimeras. These results show that the tolerance of protein structures to very large structured insertions is more general than previously expected and supports the idea that the natural sequence continuity of a structural domain is not required for the folding process. These results directly suggest a new experimental approach to screen, for example, for folded protein in randomized polypeptide sequences.  相似文献   

6.
Dixit PD  Weikl TR 《Proteins》2006,64(1):193-197
The folding rates of two-state proteins have been found to correlate with simple measures of native-state topology. The most prominent among these measures is the relative contact order (CO), which is the average CO, or localness, of all contacts in the native protein structure, divided by the chain length. Here, we test whether such measures can be generalized to capture the effect of chain crosslinks on the folding rate. Crosslinks change the chain connectivity and therefore also the localness of some of the native contacts. These changes in localness can be taken into account by the graph-theoretical concept of effective contact order (ECO). The relative ECO, however, the natural extension of the relative CO for proteins with crosslinks, overestimates the changes in the folding rates caused by crosslinks. We suggest here a novel measure of native-state topology, the relative logCO, and its natural extension, the relative logECO. The relative logCO is the average value for the logarithm of the CO of all contacts, divided by the logarithm of the chain length. The relative log(E)CO reproduces the folding rates of a set of 26 two-state proteins without crosslinks with essentially the same high correlation coefficient as the relative CO. In addition, it also captures the folding rates of eight two-state proteins with crosslinks.  相似文献   

7.
目的:筛选、鉴定与福氏2a志贺氏菌2457T株ArgT相互作用的蛋白,以进一步研究ArgT在福氏2a志贺氏菌致病过程中发挥的作用。方法:将ArgT与GST融合表达,通过体外GST沉降实验和MALDI-TOF MS技术,筛选并鉴定与福氏2a志贺氏菌2457T株ArgT相互作用的蛋白。结果:筛选并鉴定到与福氏2a志贺氏菌2457TArgT相互作用的蛋白OmpR。结论:OmpR与ArgT存在体外相互作用。  相似文献   

8.
Qi Y  Grishin NV 《Proteins》2005,58(2):376-388
Protein structure classification is necessary to comprehend the rapidly growing structural data for better understanding of protein evolution and sequence-structure-function relationships. Thioredoxins are important proteins that ubiquitously regulate cellular redox status and various other crucial functions. We define the thioredoxin-like fold using the structure consensus of thioredoxin homologs and consider all circular permutations of the fold. The search for thioredoxin-like fold proteins in the PDB database identified 723 protein domains. These domains are grouped into eleven evolutionary families based on combined sequence, structural, and functional evidence. Analysis of the protein-ligand structure complexes reveals two major active site locations for the thioredoxin-like proteins. Comparison to existing structure classifications reveals that our thioredoxin-like fold group is broader and more inclusive, unifying proteins from five SCOP folds, five CATH topologies and seven DALI domain dictionary globular folding topologies. Considering these structurally similar domains together sheds new light on the relationships between sequence, structure, function and evolution of thioredoxins.  相似文献   

9.
Among the thousands of known three-dimensional protein folds, only a few have been found whose backbones are in knotted configurations. The rarity of knotted proteins has important implications for how natural proteins reach their natively folded states. Proteins with such unusual features offer unique opportunities for studying the relationships between structure, folding, and stability. Here we report the identification of a unique slipknot feature in the fold of a well-known thermostable protein, alkaline phosphatase. A slipknot is created when a knot is formed by part of a protein chain, after which the backbone doubles back so that the entire structure becomes unknotted in a mathematical sense. Slipknots are therefore not detected by computational tests that look for knots in complete protein structures. A computational survey looking specifically for slipknots in the Protein Data Bank reveals a few other instances in addition to alkaline phosphatase. Unexpected similarities are noted among some of the proteins identified. In addition, two transmembrane proteins are found to contain slipknots. Finally, mutagenesis experiments on alkaline phosphatase are used to probe the contribution the slipknot feature makes to thermal stability. The trends and conserved features observed in these proteins provide new insights into mechanisms of protein folding and stability.  相似文献   

10.
We have devised several mechanical models of globular proteins by approximating them to various polyhedra (dodecahedron, truncated octahedron, icosahedron, truncated icosahedron). The models comprise hollow blocks linked together in a flexible chain. Between blocks there is a set of several reversible, weak magnetic interactions such that when the chain is agitated, it will fold into a stable polyhedral structure about the size of a hand. Folding may be followed in real time with a video camera. Key to the success of the folding process is the lightness of the chain. Several side chains may also be added to the blocks such that they come together to create a polyhedral core when the chain folds. The models have a number of similarities to globular proteins: each chain folds into a unique, but dynamic, three-dimensional structure; the instructions that determine this structure are built into the configuration of blocks; and it is difficult to predict this structure given the unfolded block configuration. Furthermore, the chains fold quickly, generally in less than a minute, several pathways are involved, and these pathways progress through elements of "native" structure. In particular, the models emphasize the importance of restricted conformational mobility in assisting the chain to fold, and also in eliminating undesirable interactions. Because of these similarities to globular proteins, we believe that the polyhedral models will, with continued development, be helpful in understanding the protein folding process, while at the same time acting as valuable educational visual aids. They might also inspire the construction of new types of microscopic, self-assembling devices.  相似文献   

11.
Raman EP  Barsegov V  Klimov DK 《Proteins》2007,67(4):795-810
One of the factors, which influences protein folding in vivo, is a linkage of protein domains into multidomain tandems. However, relatively little is known about the impact of domain connectivity on protein folding mechanisms. In this article, we use coarse grained models of proteins to explore folding of tandem-linked domains (TLD). We found TLD folding to follow two scenarios. In the first, the tandem connectivity produces relatively minor impact on folding and the mechanisms of folding of tandem-linked and single domains remain similar. The second scenario involves qualitative changes in folding mechanism because of tandem linkage. As a result, protein domains, which fold via two-state mechanism as single isolated domains, may form new stable intermediates when inserted into tandems. The new intermediates are created by topological constraints imposed by the linkers between domains. In both cases tandem linkage slows down folding. We propose that the impact of tandem connectivity can be minimized, if the terminal secondary structure elements (SSEs) are flexible. In particular, two factors appear to facilitate TLD folding: (1) the interactions between terminal SSE are poorly ordered in the folding transition state, whereas nonterminal SSE are better structured, (2) the interactions between terminal SSE are weak in the native state. We apply these findings to wild-type proteins by examining experimental phi-value data and by performing all-atom molecular dynamics simulations. We show that immunoglobulin-like domains appear to utilize the factors, which minimize the impact of tandem connectivity on their folding. Several single domain proteins, which are likely to misfold in tandems, are also identified.  相似文献   

12.
We describe here an algorithm for distinguishing sequential from nonsequentially folding proteins. Several experiments have recently suggested that most of the proteins that are synthesized in the eukaryotic cell may fold sequentially. This proposed folding mechanism in vivo is particularly advantageous to the organism. In the absence of chaperones, the probability that a sequentially folding protein will misfold is reduced significantly. The problem we address here is devising a procedure that would differentiate between the two types of folding patterns. Footprints of sequential folding may be found in structures where consecutive fragments of the chain interact with each other. In such cases, the folding complexity may be viewed as being lower. On the other hand, higher folding complexity suggests that at least a portion of the polypeptide backbone folds back upon itself to form three-dimensional (3D) interactions with noncontiguous portion(s) of the chain. Hence, we look at the mechanism of folding of the molecule via analysis of its complexity, that is, through the 3D interactions formed by contiguous segments on the polypeptide chain. To computationally splice the structure into consecutively interacting fragments, we either cut it into compact hydrophobic folding units or into a set of hypothetical, transient, highly populated, contiguous fragments ("building blocks" of the structure). In sequential folding, successive building blocks interact with each other from the amino to the carboxy terminus of the polypeptide chain. Consequently, the results of the parsing differentiate between sequentially vs. nonsequentially folded chains. The automated assessment of the folding complexity provides insight into both the likelihood of misfolding and the kinetic folding rate of the given protein. In terms of the funnel free energy landscape theory, a protein that truly follows the mechanism of sequential folding, in principle, encounters smoother free energy barriers. A simple sequentially folded protein should, therefore, be less error prone and fold faster than a protein with a complex folding pattern.  相似文献   

13.
Diversity and evolution of the thyroglobulin type-1 domain superfamily   总被引:1,自引:0,他引:1  
Multidomain proteins are gaining increasing consideration for their puzzling, flexible utilization in nature. The presence of the characteristic thyroglobulin type-1 (Tg1) domain as a protein module in a variety of multicellular organisms suggests pivotal roles for this building block. To gain insight into the evolution of Tg1 domains, we performed searches of protein, expressed sequence tag, and genome databases. Tg1 domains were found to be Metazoa specific, and we retrieved a total of 170 Tg1 domain-containing protein sequences. Their architectures revealed a wide taxonomic distribution of proteins containing Tg1 domains followed or preceded by secreted protein, acidic, rich in cysteines (SPARC)-type extracellular calcium-binding domains. Other proteins contained lineage-specific domain combinations of peptidase inhibitory modules or domains with different biological functions. Phylogenetic analysis showed that Tg1 domains are highly conserved within protein structures, whereas insertion into novel proteins is followed by rapid diversification. Seven different basic types of protein architecture containing the Tg1 domain were identified in vertebrates. We examined the evolution of these protein groups by combining Tg1 domain phylogeny with additional analyses based on other characteristic domains. Testicans and secreted modular calcium binding protein (SMOCs) evolved from invertebrate homologs by introduction of vertebrate-specific domains, nidogen evolved by insertion of a Tg1 domain into a preexisting architecture, and the remaining four have unique architectures. Thyroglobulin, Trops, and the major histocompatibility complex class II-associated invariant chain are vertebrate specific, while an insulin-like growth factor-binding protein and nidogen were also identified in urochordates. Among vertebrates, we observed differences in protein repertoires, which result from gene duplication and domain duplication. Members of five groups have been characterized at the molecular level. All exhibit subtle differences in their specificities and function either as peptidase inhibitors (thyropins), substrates, or both. As far as the sequence is concerned, only a few conserved residues were identified. In combination with structural data, our analysis shows that the Tg1 domain fold is highly adaptive and comprises a relatively well-conserved core surrounded by highly variable loops that account for its multipurpose function in the animal kingdom.  相似文献   

14.
Reeder PJ  Huang YM  Dordick JS  Bystroff C 《Biochemistry》2010,49(51):10773-10779
The sequential order of secondary structural elements in proteins affects the folding and activity to an unknown extent. To test the dependence on sequential connectivity, we reconnected secondary structural elements by their solvent-exposed ends, permuting their sequential order, called "rewiring". This new protein design strategy changes the topology of the backbone without changing the core side chain packing arrangement. While circular and noncircular permutations have been observed in protein structures that are not related by sequence homology, to date no one has attempted to rationally design and construct a protein with a sequence that is noncircularly permuted while conserving three-dimensional structure. Herein, we show that green fluorescent protein can be rewired, still functionally fold, and exhibit wild-type fluorescence excitation and emission spectra.  相似文献   

15.
The approach described in this paper on the prediction of folding nuclei in globular proteins with known three dimensional structures is based on a search of the lowest saddle points through the barrier separating the unfolded state from the native structure on the free-energy landscape of protein chain. This search is performed by a dynamic programming method. Comparison of theoretical results with experimental data on the folding nuclei of two dozen of proteins shows that our model provides good phi value predictions for proteins whose structures have been determined by X-ray analysis, with a less limited success for proteins whose structures have been determined by NMR techniques only. Consideration of a full ensemble of transition states results in more successful prediction than consideration of only the transition states with the minimal free energy. In conclusion we have predicted the localization of folding nuclei for three dimensional protein structures for which kinetics of folding is studied now but the localization of folding nuclei is still unknown.  相似文献   

16.
Characterization of the folding degree of proteins   总被引:1,自引:0,他引:1  
MOTIVATION: The characterization of the folding degree of chains is central to the elucidation of structure--function relationships in proteins. Here we present a new index for characterizing the folding degree of a (protein) chain. This index shows a range of features that are desirable for the study of the relation between structure and function in proteins. RESULTS: A novel index characterizing the folding degree of (protein) chains is developed based on the spectral moments of a matrix representing the dihedral angles (phi, omega and epsilon) of the protein main chain. The proposed index is normalized to the chain size, is not correlated to the gyration radius of the backbone chain and is able to distinguish between structures for which the sum of the main-chain dihedral angles is identical. The index is well correlated to the percentages of helix and strand in proteins, shows a linear dependence with temperature changes, and is able to differentiate among protein families. AVAILABILITY: On request from the author.  相似文献   

17.
Looking at proteins is an active process of interpretation and selection, emphasizing some features and deleting others. Multiple representations are needed, for such purposes as showing motions or conveying both the chain connectivity and the three-dimensional shape simultaneously. In studying and comparing protein structures, ideas are suggested about the determinants of tertiary structure and of folding (e.g., that Greek key beta barrels may fold up two strands at a time). The design and synthesis of new proteins "from scratch" provides a route toward the experimental testing of such ideas. It has also been a fruitful new perspective from which to look at structures, requiring such things as statistics on very narrowly defined structural categories and explicit attention to "negative design" criteria that actively block unwanted alternatives (e.g., reverse topology of a helix bundle, or edge-to-edge aggregation of beta sheets). Recently, the field of protein design has produced a rather unexpected general result: apparently we do indeed know enough to successfully design proteins that fold into approximately correct structures, but not enough to design unique, native-like structures. The degree of order varies considerably, but even the best designed material shows multiple conformations by NMR, more similar to a "molten globule" folding intermediate than to a well ordered native tertiary structure. In response to this conclusion, we are now working on systems that test useful questions with approximate structures (such as determining which factors most influence the choice of helix-bundle topology) and also analyzing how natural proteins achieve unique core conformations (e.g., for side chains on the interior side of a beta sheet, illustrated in the kinemages).  相似文献   

18.
Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding.  相似文献   

19.
Proteins that contain a distinct knot in their native structure are impressive examples of biological self-organization. Although this topological complexity does not appear to cause a folding problem, the mechanisms by which such knotted proteins form are unknown. We found that the fusion of an additional protein domain to either the amino terminus, the carboxy terminus, or to both termini of two small knotted proteins did not affect their ability to knot. The multidomain constructs remained able to fold to structures previously thought unfeasible, some representing the deepest protein knots known. By examining the folding kinetics of these fusion proteins, we found evidence to suggest that knotting is not rate limiting during folding, but instead occurs in a denatured-like state. These studies offer experimental insights into when knot formation occurs in natural proteins and demonstrate that early folding events can lead to diverse and sometimes unexpected protein topologies.  相似文献   

20.
We have collected the kinetic folding data for non-two-state and two-state globular proteins reported in the literature, and investigated the relationships between the folding kinetics and the native three-dimensional structure of these proteins. The rate constants of formation of both the intermediate and the native state of non-two-state folders were found to be significantly correlated with protein chain length and native backbone topology, which is represented by the absolute contact order and sequence-distant native pairs. The folding rate of two-state folders, which is known to be correlated with the native backbone topology, apparently does not correlate significantly with protein chain length. On the basis of a comparison of the folding rates of the non-two-state and two-state folders, it was found that they are similarly dependent on the parameters that reflect the native backbone topology. This suggests that the mechanisms behind non-two-state and two-state folding are essentially identical. The present results lead us to propose a unified mechanism of protein folding, in which folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the intermediate. Apparently, two-state folding is merely a simplified version of hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号