首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Recently much effort has resulted in papers on how stem cells can be generated from adult tissues in mice, but the salamanders do this routinely. Salamanders can regenerate most of their body parts, such as limbs, eyes, jaw, brain (and spinal cord), heart, etc. Regeneration in salamanders starts by dedifferentiation of the terminally differentiated tissues at the site of injury. The dedifferentiated cells can then differentiate to reconstitute the lost tissues. This transdifferentiation in an adult animal is unprecedented among vertebrates and does not involve recruitment of stem cells. One of the ideas is that such reprogramming of terminally differentiated cells might involve mechanisms that are similar to the maintenance of embryonic stem cells. In the stem cell field much emphasis has been recently given to the reprogramming of adult cells (such as skin fibroblasts) to revert to ES or pluripotent stem cells. It is our conviction that generation of dedifferentiated cells in salamanders and stem cells, such as the ones seen in repair in mammals share molecular signatures. This mini review will discuss these issues and ideas that could unite the stem cell biology with the classical regeneration models.  相似文献   

3.
J.E. Purkyn? was the first to discover, by achromatic microscopy of stained and fixed as well as of fresh material, that animal tissues in general, and those of the central nervous system in particular, are made up of cells, as are those of plants. His discoveries laid the foundations of modern research on the ultrastructure and biophysies of the cerebellar neurons which bear his name, as well as on other types of neurons, in vitro as well as in vivo.  相似文献   

4.
5.
Turning germ cells into stem cells   总被引:5,自引:0,他引:5  
Primordial germ cells (PGCs), the embryonic precursors of the gametes of the adult animal, can give rise to two types of pluripotent stem cells. In vivo, PGCs can give rise to embryonal carcinoma cells, the pluripotent stem cells of testicular tumors. Cultured PGCs exposed to a specific cocktail of growth factors give rise to embryonic germ cells, pluripotent stem cells that can contribute to all the lineages of chimeric embryos including the germline. The conversion of PGCs into pluripotent stem cells is a remarkably similar process to nuclear reprogramming in which a somatic nucleus is reprogrammed in the egg cytoplasm. Understanding the genetics of embryonal carcinoma cell formation and the growth factor signaling pathways controlling embryonic germ cell derivation could tell us much about the molecular controls on developmental potency in mammals.  相似文献   

6.
B cells as antigen presenting cells   总被引:5,自引:0,他引:5  
Several characteristics confer on B cells the ability to present antigen efficiently: (1) they can find T cells in secondary lymphoid organs shortly after antigen entrance, (2) BCR-mediated endocytosis allows them to concentrate small amounts of specific antigen, and (3) BCR signaling and HLA-DO expression direct their antigen processing machinery to favor presentation of antigens internalized through the BCR. When presenting antigen in a resting state, B cells can induce T cell tolerance. On the other hand, activation by antigen and T cell help converts them into APC capable of promoting immune responses. Presentation of self antigens by B cells is important in the development of autoimmune diseases, while presentation of tumor antigens is being used in vaccine strategies to generate immunity. Thus, detailed understanding of the antigen presenting function of B cells can lead to their use for the generation or inhibition of immune responses.  相似文献   

7.
8.
The pancreatic β-cell has a pivotal role in the regulation of glucose homeostasis; its death leads to type I diabetes. Neogenesis of β-cells, the differentiation of β-cells from non-β-cells, could be an important mechanism of islet cell repopulation. To examine the ability of the adult pancreas to generate new β-cells, we characterized the phenotype of β precursor cells in embryos and then determined that cells expressing embryonic traits appeared in islets of adult mouse pancreas following deletion of preexisting insulin cells by streptozotocin, a specific β-cell toxin. These precursor cells generated new β-cells (NBCs) that repopulated the islets. The number of NBCs increased dramatically after restoration of normoglycemia by insulin therapy. Future studies will seek to identify the source of the NBCs and to examine the mechanisms that lead to their differentiation.  相似文献   

9.
10.
11.
12.
13.
14.
Murine embryonic stem (ES) cells are cell lines established from blastocyst which can contribute to all adult tissues, including the germ-cell lineage, after reincorporation into the normal embryo. ES cell pluripotentiality is preserved in culture in the presence of LIF. LIF withdrawal induces ES cell differentiation to nervous, myocardial, endothelial and hematopoietic tissues. The model of murine ES cell hematopoietic differentiation is of major interest because ES cells are non transformed cell lines and the consequences of genomic manipulations of these cells are directly measurable on a hierarchy of synchronized in vitro ES cell-derived hematopoietic cell populations. These include the putative hemangioblast (which represents the emergence of both hematopoietic and endothelial tissues during development), myeloid progenitors and mature stages of myeloid lineages. Human ES cell lines have been recently derived from human blastocyst in the USA. Their manipulation in vitro should be authorized in France in a near future with the possibility of developing a model of human hematopoietic differentiation. This allows to envisage in the future the use of ES cells as a source of human hematopoietic cells.  相似文献   

15.
16.
Recent research has shown that adipose tissues contain abundant MSCs (mesenchymal stem cells). The origin and location of the adipose stem cells, however, remain unknown, presenting an obstacle to the further purification and study of these cells. In the present study, we aimed at investigating the origins of adipose stem cells. α-SMA (α-smooth muscle actin) is one of the markers of pericytes. We harvested ASCs (adipose stromal cells) from α-SMA-GFP (green fluorescent protein) transgenic mice and sorted them into GFP-positive and GFP-negative cells by FACS. Multilineage differentiation tests were applied to examine the pluripotent ability of the α-SMA-GFP-positive and -negative cells. Immunofluorescent staining for α-SMA and PDGF-Rβ (platelet-derived growth factor receptor β) were applied to identify the α-SMA-GFP-positive cells. Then α-SMA-GFP-positive cells were loaded on a collagen-fibronectin gel with endothelial cells to test their vascularization ability both in vitro and in vivo. Results show that, in adipose tissue, all of the α-SMA-GFP-positive cells congregate around the blood vessels. Only the α-SMA-GFP-positive cells have multilineage differentiation ability, while the α-SMA-GFP-negative cells can only differentiate in an adipogenic direction. The α-SMA-GFP-positive cells maintained expression of α-SMA during multilineage differentiation. The α-SMA-GFP-positive cells can promote the vascularization of endothelial cells in three-dimensional culture both in vitro and in vivo. We conclude that the adipose stem cells originate from perivascular cells and congregate around blood vessels.  相似文献   

17.
18.
Making new beta cells from stem cells   总被引:4,自引:0,他引:4  
In 2000, Shapiro et al. provided compelling "proof of principle" data showing that the transplantation of human islets, purified from cadaveric material, could restore severely diabetic, Type 1 patients to insulin independence. This demonstration prompted renewed efforts to find an alternative and sustainable source of surrogate islet cells for cell therapy. Experiments involving adult ductal and liver "stem" cells, or embryonic stem cells, are prominent amongst these endeavors and are reviewed in this article. Whilst there are many published claims to success in converting ES cells into insulin secreting, glucose responsive cells, all require careful reinterpretation in the light of findings that cells can adsorb insulin present in growth media. It is likely that work with adult cells is less prone to this potential artifact and significant progress has been made in producing insulin-secreting cells. Assessment of in vivo function in the surrogate cells is most frequently made using cell transplantation into toxin-induced, diabetic mice, but this model is rarely used to maximal advantage. In many cases, it remains unclear whether reductions in the hyperglycemia result from insulin secretion from the transplanted cells or are due to recovery of endogenous islet function. In this latter context, experiments are reviewed where endogenous stimulation of recovery is engendered even by irradiated donor cells.  相似文献   

19.
Mast cells were obtained in a high state of purity from mouse peritoneal washings by means of centrifugation over metrizamide density gradients. In microcytotoxicity assays in vitro they were cytotoxic to cells of a mouse methylcholanthrene-induced fibrosarcoma (C-4). Mast cells from uninjected mice, mice injected intraperitoneally with proteose peptone, and C-4-bearing mice were equally effective. They were also cytotoxic to two rat fibrosarcomas and, to a much lesser extent, to mouse fibroblasts. Cytotoxicity was inhibited by cAMP, DBcAMP, and reserpine but not by chloroquin, hydrocortisone, chlorpheniramine, promethazine, cimetidine, sodium cromoglycate, protamine sulfate, cytochalasin B, or colchicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号