首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells--which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.  相似文献   

2.
3.
Insulin-producing β-cells are present as single cells or in small clusters distributed throughout the pancreas of the Xenopus laevis tadpole. During metamorphic climax when the exocrine pancreas dedifferentiates to progenitor cells, the β-cells undergo two changes. Insulin mRNA is down regulated at the beginning of metamorphic climax (NF62) and reexpressed again near the end of climax. Secondly, the β-cells aggregate to form islets. During climax the increase in insulin cluster size is not caused by cell proliferation or by acinar-to-β-cell transdifferentiation, but rather is due to the aggregation of pre-existing β-cells. The total number of β-cells does not change during the 8 days of climax. Thyroid hormone (TH) induction of premetamorphic tadpoles causes an increase in islet size while prolonged treatment of tadpoles with the goitrogen methimazole inhibits this increase. Expression of a dominant negative form of the thyroid hormone receptor (TRDN) driven by the elastase promoter not only protects the exocrine pancreas of a transgenic tadpole from TH-induced dedifferentiation but also prevents aggregation of β-cells at climax. These transgenic tadpoles do however undergo normal loss and resynthesis of insulin mRNA at the same stage as controls. In contrast transgenic tadpoles with the same TRDN transgene driven by an insulin promoter do not undergo down regulation of insulin mRNA, but do aggregate β-cells to form islets like controls. These results demonstrate that TH controls the remodeling of β-cells through cell-cell interaction with dedifferentiating acinar cells and a cell autonomous program that temporarily shuts off the insulin gene.  相似文献   

4.
5.
6.
Zhang Y  Zhang Y  Bone RN  Cui W  Peng JB  Siegal GP  Wang H  Wu H 《PloS one》2012,7(5):e36675
The non-β endocrine cells in pancreatic islets play an essential counterpart and regulatory role to the insulin-producing β-cells in the regulation of blood-glucose homeostasis. While significant progress has been made towards the understanding of β-cell regeneration in adults, very little is known about the regeneration of the non-β endocrine cells such as glucagon-producing α-cells and somatostatin producing δ-cells. Previous studies have noted the increase of α-cell composition in diabetes patients and in animal models. It is thus our hypothesis that non-β-cells such as α-cells and δ-cells in adults can regenerate, and that the regeneration accelerates in diabetic conditions. To test this hypothesis, we examined islet cell composition in a streptozotocin (STZ)-induced diabetes mouse model in detail. Our data showed the number of α-cells in each islet increased following STZ-mediated β-cell destruction, peaked at Day 6, which was about 3 times that of normal islets. In addition, we found δ-cell numbers doubled by Day 6 following STZ treatment. These data suggest α- and δ-cell regeneration occurred rapidly following a single diabetes-inducing dose of STZ in mice. Using in vivo BrdU labeling techniques, we demonstrated α- and δ-cell regeneration involved cell proliferation. Co-staining of the islets with the proliferating cell marker Ki67 showed α- and δ-cells could replicate, suggesting self-duplication played a role in their regeneration. Furthermore, Pdx1(+)/Insulin(-) cells were detected following STZ treatment, indicating the involvement of endocrine progenitor cells in the regeneration of these non-β cells. This is further confirmed by the detection of Pdx1(+)/glucagon(+) cells and Pdx1(+)/somatostatin(+) cells following STZ treatment. Taken together, our study demonstrated adult α- and δ-cells could regenerate, and both self-duplication and regeneration from endocrine precursor cells were involved in their regeneration.  相似文献   

7.
8.
In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types.  相似文献   

9.
Mature microRNAs (miRNAs), derived through cleavage of pre-miRNAs by the Dicer1 enzyme, regulate protein expression in many cell-types including cells in the pancreatic islets of Langerhans. To investigate the importance of miRNAs in mouse insulin secreting β-cells, we have generated mice with a β-cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP). In contrast to their normoglycaemic control littermates (RIP-Cre(+/-) Dicer1(Δ/wt)), RIP-Cre(+/-)Dicer1(flox/flox) mice (RIP-Cre Dicer1(Δ/Δ)) developed progressive hyperglycaemia and full-blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses revealed altered islet morphology, marked decreased β-cell mass, reduced numbers of granules within the β-cells and reduced granule docking in adult RIP-Cre Dicer1(Δ/Δ) mice. β-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal β-cell development as 2-week old RIP-Cre Dicer1(Δ/Δ) mice showed ultrastructurally normal β-cells and intact insulin secretion. In conclusion, we have demonstrated that a β-cell specific disruption of the miRNAs network, although allowing for apparently normal β-cell development, leads to progressive impairment of insulin secretion, glucose homeostasis and diabetes development.  相似文献   

10.
The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing β-cells. The functional mass of β-cells is decreased in type 1 diabetes, so replacing missing β-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding β-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated.In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet β-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the “gold standard” of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal cells as an in vivo progenitor for pancreatic β-cells has implications for a potentially important, expandable source of new islets for diabetic replenishment therapy.  相似文献   

11.
Mimitin, a novel mitochondrial protein, has been shown to act as a molecular chaperone for the mitochondrial complex I and to regulate ATP synthesis. During Type 1 diabetes development, pro-inflammatory cytokines induce mitochondrial damage in pancreatic β-cells, inhibit ATP synthesis and reduce glucose-induced insulin secretion. Mimitin was expressed in rat pancreatic islets including β-cells and decreased by cytokines. In the ob/ob mouse, a model of insulin resistance and obesity, mimitin expression was down-regulated in liver and brain, up-regulated in heart and kidney, but not affected in islets. To further analyse the impact of mimitin on β-cell function, two β-cell lines, one with a low (INS1E) and another with a higher (MIN6) mimitin expression were studied. Mimitin overexpression protected INS1E cells against cytokine-induced caspase 3 activation, mitochondrial membrane potential reduction and ATP production inhibition, independently from the NF-κB (nuclear factor κB)-iNOS (inducible NO synthase) pathway. Mimitin overexpression increased basal and glucose-induced insulin secretion and prevented cytokine-mediated suppression of insulin secretion. Mimitin knockdown in MIN6 cells had opposite effects to those observed after overexpression. Thus mimitin has the capacity to modulate pancreatic islet function and to reduce cytokine toxicity.  相似文献   

12.
13.
Advanced glycation endproducts (AGEs) and the receptor for AGEs (RAGE) have been linked to the pathogenesis of diabetic complications, such as retinopathy, neuropathy, and nephropathy. AGEs may induce β-cell dysfunction and apoptosis, another complication of diabetes. However, the role of AGE-RAGE interaction in AGE-induced pancreatic β-cell failure has not been fully elucidated. In this study, we investigated whether AGE–RAGE interaction could mediate β-cell failure. We explored the potential mechanisms in insulin secreting (INS-1) cells from a pancreatic β-cell line, as well as primary rat islets. We found that glycated serum (GS) induced apoptosis in pancreatic β-cells in a dose- and time-dependent manner. Treatment with GS increased RAGE protein production in cultured INS-1 cells. GS treatment also decreased bcl-2 gene expression, followed by mitochondrial swelling, increased cytochrome c release, and caspase activation. RAGE antibody and knockdown of RAGE reversed the β-cell apoptosis and bcl-2 expression. Inhibition of RAGE prevented AGE-induced pancreatic β-cell apoptosis, but could not restore the function of glucose stimulated insulin secretion (GSIS) in rat islets. In summary, the results of the present study demonstrate that AGEs are integrally involved in RAGE-mediated apoptosis and impaired GSIS dysfunction in pancreatic β-cells. Inhibition of RAGE can effectively protect β-cells against AGE-induced apoptosis, but cannot reverse islet dysfunction in GSIS.  相似文献   

14.
β-cell neogenesis triggers the generation of new β-cells from precursor cells. Neogenesis from duct epithelium is the most currently described and the best documented process of differentiation of precursor cells into β-cells. It is contributes not only to β-cell mass expansion during fetal and nonatal life but it is also involved in the maintenance of the β-cell mass in adults. It is also required for the increase in β-cell mass in situations of increase insulin demand (obesity, pregnancy). A large number of factors controlling the differentiation of β-cells has been identified. They are classified into the following main categories: growth factors, cytokine and inflamatory factors, and hormones such as PTHrP and GLP-1. The fact that intestinal incretin hormone GLP-1 exerts a major trophic role on pancreatic β-cells provides insights into the possibility to pharmacologically stimulate β-cell neogenesis. This could have important implications for the of treatment of type 1 and type 2 diabetes. Transdifferentiation, that is, the differentiation of already differentiated cells into β-cells, remains controversial.However, more and more studies support this concept. The cells, which can potentially “transdifferentiate” into β-cells, can belong to the pancreas (acinar cells) and even islets, or originate from extra-pancreatic tissues such as the liver. Neogenesis from intra-islet precursors also have been proposed and subpopulations of cell precursors inside islets have been described by some authors. Nestin positive cells, which have been considered as the main candidates, appear rather as progenitors of endothelial cells rather than β-cells and contribute to angiogenesis rather than neogenesis. To take advantage of the different differentiation processes may be a direction for future cellular therapies. Ultimately, a better understanding of the molecular mechanisms involved in β-cell neogenesis will allow us to use any type of differentiated and/or undifferentiated cells as a source of potential cell precursors.  相似文献   

15.
BACE1 (β-site amyloidogenic cleavage of precursor protein-cleaving enzyme 1) is a β-secretase protein that plays a central role in the production of the β-amyloid peptide in the brain and is thought to be involved in the Alzheimer's pathogenesis. In type 2 diabetes, amyloid deposition within the pancreatic islets is a pathophysiological hallmark, making crucial the study in the pancreas of BACE1 and its homologous BACE2 to understand the pathological mechanisms of this disease. The objectives of the present study were to characterize the localization of BACE proteins in human pancreas and determine their function. High levels of BACE enzymatic activity were detected in human pancreas. In normal human pancreas, BACE1 was observed in endocrine as well as in exocrine pancreas, whereas BACE2 expression was restricted to β-cells. Intracellular analysis using immunofluorescence showed colocalization of BACE1 with insulin and BACE2 with clathrin-coated vesicles of the plasma membrane in MIN6 cells. When BACE1 and -2 were pharmacologically inhibited, BACE1 localization was not altered, whereas BACE2 content in clathrin-coated vesicles was increased. Insulin internalization rate was reduced, insulin receptor β-subunit (IRβ) expression was decreased at the plasma membrane and increased in the Golgi apparatus, and a significant reduction in insulin gene expression was detected. Similar results were obtained after specific BACE2 silencing in MIN6 cells. All these data point to a role for BACE2 in the IRβ trafficking and insulin signaling. In conclusion, BACE2 is hereby presented as an important enzyme in β-cell function.  相似文献   

16.
17.
This paper describes a novel strategy to confine transplanted β-cells in a natural immune suppressive matrix barrier which could provide new avenues for insights into β-cell transplantation without the use of harmful medication.Type I diabetes is characterized by autoimmune destruction of the endocrine pancreas islets. In our hypothetical strategy we include various aspects that could be beneficial for successful β-cell transplantation, dependent on the pathology-specific expression of immune response dampening molecules. Here we propose a novel strategy involving local inflammation-specific induction of immunosuppressive proteins by a Symbiotic Defence Cell (SDC). SDC is a helper cell line that could form a surrounding matrix barrier disallowing autoimmune cells to reach and destroy the pancreatic β-cells. This immunosuppressive barrier consists of usable secretion of immunosuppressive proteins like Tumor Necrosis Factor inhibitor (TNFi), Soluble Cytotoxic T Lymphocyte Antigen-4 ligand (CTLA-4 ligand) and Insulin-like Growth Factor-I (IGF-I).  相似文献   

18.
Markers of β-cell maturity would be useful in staging the differentiation of stem/progenitor cells to β-cells whether in vivo or in vitro. We previously identified markers for newly formed β-cells in regenerating rat pancreases after 90% partial pancreatectomy. To test the generality of these markers of newly formed β-cells, we examined their expression during the perinatal period, a time of recognized β-cell immaturity. We show by semiquantitative RT-PCR and immunostaining over the time course from embryonic day 18/20 to birth, 1 day, 2 days, 3 days, 7 days, and adult that MMP-2, CK-19, and SPD are truly markers of new and immature β-cells and that their expression transiently peaks in the perinatal period and is not entirely synchronous. The shared expression of these markers among fetal, newborn, and newly regenerated β-cells, but not adult, strongly supports their use as potential markers for new β-cells in the assessment of both the maturity of stem cell–derived insulin-producing cells and the presence of newly formed islets (neogenesis) in the adult pancreas. (J Histochem Cytochem 58:369–376, 2010)  相似文献   

19.
Loss of pancreatic β-cell mass is deleterious for type 2 diabetes patients since it reduces insulin production, critical for glucose homeostasis. The main research axis developed over the last few years was to generate new pancreatic β-cells or to transplant pancreatic islets as occurring for some specific type 1 diabetes patients. We evaluate here a new paradigm consisting in preservation of β-cells by prevention of human islet amyloid polypeptide (hIAPP) oligomers and fibrils formation leading to pancreatic β-cell death. We review the hIAPP physiology and the pathology that contributes to β-cell destruction, deciphering the various cellular steps that could be involved. Recent progress in understanding other amyloidosis such as Aβ, Tau, α-synuclein or prion, involved in neurodegenerative processes linked with inflammation, has opened new research lines of investigations to preserve neuronal cells. We evaluate and estimate their transposition to the pancreatic β-cells preservation. Among them is the control of reactive oxygen species (ROS) production occurring with inflammation and the possible implication of the mitochondrial translocator protein as a diagnostic and therapeutic target. The present review also focuses on other amyloid forming proteins from molecular to physiological and physiopathological points of view that could help to better decipher hIAPP-induced β-cell death mechanisms and to prevent hIAPP fibril formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号