首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Little is known about how a neuron undergoes site-specific changes in intrinsic excitability during neuronal activity. We provide evidence for a novel mechanism for mTORC1 kinase–dependent translational regulation of the voltage-gated potassium channel Kv1.1 messenger RNA (mRNA). We identified a microRNA, miR-129, that repressed Kv1.1 mRNA translation when mTORC1 was active. When mTORC1 was inactive, we found that the RNA-binding protein, HuD, bound to Kv1.1 mRNA and promoted its translation. Unexpectedly, inhibition of mTORC1 activity did not alter levels of miR-129 and HuD to favor binding to Kv1.1 mRNA. However, reduced mTORC1 signaling caused the degradation of high affinity HuD target mRNAs, freeing HuD to bind Kv1.1 mRNA. Hence, mTORC1 activity regulation of mRNA stability and high affinity HuD-target mRNA degradation mediates the bidirectional expression of dendritic Kv1.1 ion channels.  相似文献   

5.
Gliomas such as oligodendrogliomas (ODG) and glioblastomas (GBM) are brain tumours with different clinical outcomes. Histology-based classification of these tumour types is often difficult. Therefore the first aim of this study was to gain microRNA data that can be used as reliable signatures of oligodendrogliomas and glioblastomas. We investigated the levels of 282 microRNAs using membrane-array hybridisation and real-time PCR in ODG, GBM and control brain tissues. In comparison to these control tissues, 26 deregulated microRNAs were identified in tumours and the tissue levels of seven microRNAs (miR-21, miR-128, miR-132, miR-134, miR-155, miR-210 and miR-409-5p) appropriately discriminated oligodendrogliomas from glioblastomas. Genomic, epigenomic and host gene expression studies were conducted to investigate the mechanisms involved in these deregulations. Another aim of this study was to better understand glioma physiopathology looking for targets of deregulated microRNAs. We discovered that some targets of these microRNAs such as STAT3, PTBP1 or SIRT1 are differentially expressed in gliomas consistent with deregulation of microRNA expression. Moreover, MDH1, the target of several deregulated microRNAs, is repressed in glioblastomas, making an intramitochondrial-NAD reduction mediated by the mitochondrial aspartate-malate shuttle unlikely. Understanding the connections between microRNAs and bioenergetic pathways in gliomas may lead to identification of novel therapeutic targets.  相似文献   

6.
Regulation of cellular proliferation and differentiation during brain development results from processes requiring several regulatory networks to function in synchrony. MicroRNAs are part of this regulatory system. Although many microRNAs are evolutionarily conserved, recent evolution of such regulatory molecules can enable the acquisition of new means of attaining specialized functions. Here we identify and report the novel expression and functions of a human and higher primate-specific microRNA, miR-1290, in neurons. Using human fetal-derived neural progenitors, SH-SY5Y neuroblastoma cell line and H9-ESC-derived neural progenitors (H9-NPC), we found miR-1290 to be upregulated during neuronal differentiation, using microarray, northern blotting and qRT-PCR. We then conducted knockdown and overexpression experiments to look at the functional consequences of perturbed miR-1290 levels. Knockdown of miR-1290 inhibited differentiation and induced proliferation in differentiated neurons; correspondingly, miR-1290 overexpression in progenitors led to a slowing down of the cell cycle and differentiation to neuronal phenotypes. Consequently, we identified that crucial cell cycle proteins were aberrantly changed in expression level. Therefore, we conclude that miR-1290 is required for maintaining neurons in a differentiated state.  相似文献   

7.
8.
9.
10.
Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.  相似文献   

11.
12.
mRNA surveillance pathways selectively clear defective mRNAs from the cell. As such, these pathways serve as important modifiers of genetic disorders. Nonsense-mediated decay (NMD), the most intensively studied surveillance pathway, recognizes mRNAs with premature termination codons (PTCs). In mammalian systems the location of a PTC more than 50 nucleotides 5' to the terminal exon-exon junction is a critical determinant of NMD. However, mRNAs with nonsense codons that fulfill this requirement but are located very early in the open reading frame can effectively evade NMD. The unexpected resistance of such mRNAs with AUG-proximal PTCs to accelerated decay suggests that important determinants of NMD remain to be identified. Here, we report that an NMD-sensitive mRNA can be stabilized by artificially tethering the cytoplasmic poly(A) binding protein 1, PABPC1, at a PTC-proximal position. Remarkably, the data further suggest that NMD of an mRNA with an AUG-proximal PTC can also be repressed by PABPC1, which might be brought into proximity with the PTC during cap-dependent translation and 43S scanning. These results reveal a novel parameter of NMD in mammalian cells that can account for the stability of mRNAs with AUG-proximal PTCs. These findings serve to expand current mechanistic models of NMD and mRNA translation.  相似文献   

13.
Nonsense-mediated mRNA decay (NMD) is an mRNA quality control mechanism that destabilizes aberrant mRNAs harboring premature termination (nonsense) codons (PTCs). Recent studies have shown that NMD also targets mRNAs transcribed from a large subset of wild-type genes. This raises the possibility that NMD itself is under regulatory control. Indeed, several recent studies have shown that NMD activity is modulated in specific cell types and that key components of the NMD pathway are regulated by several pathways, including microRNA circuits and NMD itself. Cellular stress also modulates the magnitude of NMD by mechanisms that are beginning to be understood. Here, we review the evidence that NMD is regulated and discuss the physiological role for this regulation. We propose that the efficiency of NMD is altered in some cellular contexts to regulate normal biological events. In disease states—such as in cancer—NMD is disturbed by intrinsic and extrinsic factors, resulting in altered levels of crucial NMD-targeted mRNAs that lead to downstream pathological consequences. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

14.
Recent deep-sequencing efforts have identified many novel non-conserved small RNAs that are expressed at low levels in certain mammalian cells. Whether these small RNAs are important for mammalian physiology is debatable, therefore we explored the function of one such RNA, human miR-1271. This small RNA is similar in sequence to miR-96, a highly conserved microRNA that when mutated causes hearing loss in humans and mice. Although the miR-1271 and miR-96 sequences differ slightly, our in vitro assays indicate that they have an identical regulatory activity. We have identified brain-expressed mRNAs from genes including, GPHN, RGS2, HOMER1 and KCC2, which share the same miR-96 and miR-1271 regulatory elements. Interestingly, human miR-1271 is expressed abundantly in brain tissue, where miR-96 is not highly expressed. The rodent miR-1271 precursor contains several sequence differences in the precursor stem, which appear to reduce the efficiency of microRNA processing. Our data indicate that although miR-1271 and miR-96 function identically in vitro, they function to some extent uniquely in vivo. Given the expression patterns and nature of the target genes, miR-1271 may have a significant, although non-conserved, role in regulating aspects of neural development or function in humans.  相似文献   

15.

Background

MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth.

Methodology and Principal Findings

We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence.

Conclusions and Significance

Here we report the novel regulation of reactive oxygen species (ROS) by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states.  相似文献   

16.
17.
18.
The nuclear lamina is composed mainly of lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Dogma has held that lamins B1 and B2 play unique and essential roles in the nucleus of every eukaryotic cell. Recent studies have raised doubts about that view but have uncovered crucial roles for lamins B1 and B2 in neuronal migration during the development of the brain. The relevance of lamins A and C in the brain remains unclear, but it is intriguing that prelamin A expression in the brain is low and is regulated by miR-9, a brain-specific microRNA.  相似文献   

19.
Giorgi C  Yeo GW  Stone ME  Katz DB  Burge C  Turrigiano G  Moore MJ 《Cell》2007,130(1):179-191
Proper neuronal function and several forms of synaptic plasticity are highly dependent on precise control of mRNA translation, particularly in dendrites. We find that eIF4AIII, a core exon junction complex (EJC) component loaded onto mRNAs by pre-mRNA splicing, is associated with neuronal mRNA granules and dendritic mRNAs. eIF4AIII knockdown markedly increases both synaptic strength and GLUR1 AMPA receptor abundance at synapses. eIF4AIII depletion also increases ARC, a protein required for maintenance of long-term potentiation; arc mRNA, one of the most abundant in dendrites, is a natural target for nonsense-mediated decay (NMD). Numerous new NMD candidates, some with potential to affect synaptic activity, were also identified computationally. Two models are presented for how translation-dependent decay pathways such as NMD might advantageously function as critical brakes for protein synthesis in cells such as neurons that are highly dependent on spatially and temporally restricted protein expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号