首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3′,4′-Trihydroxyisoflavone (7,3′,4′-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3′,4′-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G1 phase. As shown by Western blot, 7,3′,4′-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G1 phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3′,4′-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3β/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3′,4′-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3′,4′-THIF provide a molecular basis for the possible development of new chemoprotective agents.  相似文献   

2.
Rahman M  Kundu JK  Shin JW  Na HK  Surh YJ 《PloS one》2011,6(11):e28065
Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Docosahexaenoic acid (DHA), a representative ω-3 polyunsaturated fatty acid, has been reported to possess anti-inflammatory and chemopreventive properties. In the present study, we investigated the molecular mechanisms underlying the inhibitory effects of DHA on UVB-induced inflammation in mouse skin. Our study revealed that topical application of DHA prior to UVB irradiation attenuated the expression of cyclooxygenase-2 (COX-2) and NAD(P)H:oxidase-4 (NOX-4) in hairless mouse skin. DHA pretreatment also attenuated UVB-induced DNA binding of nuclear factor-kappaB (NF-κB) through the inhibition of phosphorylation of IκB kinase-α/β, phosphorylation and degradation of IκBα and nuclear translocation of p50 and p65. In addition, UVB-induced phosphorylation of p65 at the serine 276 residue was significantly inhibited by topical application of DHA. Irradiation with UVB induced phosphorylation of mitogen and stress-activated kinase-1 (MSK1), extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase, and all these events were attenuated by pretreatment with DHA. Blocking ERK and p38 MAP kinase signaling by U0126 and SB203580, respectively, diminished MSK1 phosphorylation in UVB-irradiated mouse skin. Pretreatment with H-89, a pharmacological inhibitor of MSK1, abrogated UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 in mouse skin. In conclusion, topically applied DHA inhibits the UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 by blocking the phosphorylation of MSK1, a kinase downstream of ERK and p38 MAP kinase, in hairless mouse skin.  相似文献   

3.
Daidzein and genistein are isoflavones found in soybean. Genistein is known to exhibit anticarcinogenic activities and inhibit tyrosine kinase activity. However, the underlying molecular mechanisms of the chemopreventive activities of daidzein and its metabolite, equol, are not understood. Here we report that equol inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal cells by targeting the MEK/ERK/p90RSK/activator protein-1 signaling pathway. TPA-induced neoplastic cell transformation was inhibited by equol, but not daidzein, at noncytotoxic concentrations in a dose-dependent manner. Equol dose-dependently attenuated TPA-induced activation of activator protein-1 and c-fos, whereas daidzein did not exert any effect when tested at the same concentrations. The TPA-induced phosphorylation of ERK1/2, p90RSK, and Elk, but not MEK or c-Jun N-terminal kinase, was inhibited by equol but not by daidzein. In vitro kinase assays revealed that equol greatly inhibited MEK1, but not Raf1, kinase activity, and an ex vivo kinase assay also demonstrated that equol suppressed TPA-induced MEK1 kinase activity in JB6 P+ cell lysates. Equol dose-dependently inhibited neoplastic transformation of JB6 P+ cells induced by epidermal growth factor or H-Ras. Both in vitro and ex vivo pull-down assays revealed that equol directly bound with glutathione S-transferase-MEK1 to inhibit MEK1 activity without competing with ATP. These results suggested that the antitumor-promoting effect of equol is due to the inhibition of cell transformation mainly by targeting a MEK signaling pathway. These findings are the first to reveal a molecular basis for the anticancer action of equol and may partially account for the reported chemopreventive effects of soybean.  相似文献   

4.
5.
The soy isoflavones, genistein (5,7,4'-trihydroxyisoflavone) and daidzein (7,4'-dihydroxyisoflavone), are representative phytoestrogens that function as chemopreventive agents against cancers, cardiovascular disease, and osteoporosis. However, recent studies indicated that genistein and/or daidzein induced cancers of reproductive organs in rodents, such as the uterus and vulva. To clarify the molecular mechanisms underlying the induction of carcinogenesis by soy isoflavones, we examined the ability of genistein, daidzein, and their metabolites, 5,7,3',4'-tetrahydroxyisoflavone (orobol), 7,3',4'-trihydroxyisoflavone (7,3',4'-OH-IF), and 6,7,4'-trihydroxyisoflavone (6,7,4'-OH-IF), to cause DNA damage and cell proliferation. An E-screen assay revealed that genistein and daidzein enhanced proliferation of estrogen-sensitive breast cancer MCF-7 cells, while their metabolites had little or no effect. A surface plasmon resonance sensor showed that binding of isoflavone-liganded estrogen receptors (ER) to estrogen response elements (ERE) was largely consistent with cell proliferative activity of isoflavones. Orobol and 7,3',4'-OH-IF significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in human mammary epithelial MCF-10A cells, while genistein, daidzein, and 6,7,4'-OH-IF did not. Experiments using isolated DNA revealed a metal-dependent mechanism of oxidative DNA damage induced by orobol and 7,3',4'-OH-IF. DNA damage was enhanced by the addition of endogenous reductant NADH, formed via the redox cycle. These findings suggest that oxidative DNA damage by isoflavone metabolites plays a role in tumor initiation and that cell proliferation by isoflavones via ER-ERE binding induces tumor promotion and/or progression, resulting in cancer of estrogen-sensitive organs.  相似文献   

6.
Dehydroglyasperin D (DHGA‐D), a compound present in licorice, has been found to exhibit anti‐obesity, antioxidant and anti‐aldose reductase effects. However, the direct molecular mechanism and molecular targets of DHGA‐D during skin inflammation remain unknown. In the present study, we investigated the effect of DHGA‐D on inflammation and its mechanism of action on UVB‐induced skin inflammation in HaCaT human keratinocytes and SKH‐1 hairless mice. DHGA‐D treatment strongly suppressed UVB‐induced COX‐2 expression, PGE2 generation and AP‐1 transactivity in HaCaT cells without affecting cell viability. DHGA‐D also inhibited phosphorylation of the mitogen‐activated protein kinase kinase (MKK) 3/6/p38, MAPK/Elk‐1, MKK4/c‐Jun N‐terminal kinase (JNK) 1/2/c‐Jun/mitogen, and stress‐activated protein kinase (MSK), whereas phosphorylation of the mixed‐lineage kinase (MLK) 3 remained unaffected. Kinase and co‐precipitation assays with DHGA‐D Sepharose 4B beads showed that DHGA‐D significantly suppressed MLK3 activity through direct binding to MLK3. Knockdown of MLK3 suppressed COX‐2 expression as well as phosphorylation of MKK4/p38 and MKK3/6/JNK1/2 in HaCaT cells. Furthermore, Western blot assay and immunohistochemistry results showed that DHGA‐D pre‐treatment significantly inhibits UVB‐induced COX‐2 expression in vivo. Taken together, these results indicate that DHGA‐D may be a promising anti‐inflammatory agent that mediates suppression of both COX‐2 expression and the MLK3 signalling pathway through direct binding and inhibition of MLK3.  相似文献   

7.
8.
Although rice bran consumption is reportedly has numerous beneficial effects on human health, the relationship between rice bran and the prevention of photoaging has not been investigated in detail. We sought to investigate whether consumption of rice bran supplement (RBS) can elicit preventive effects against UVB-induced photoaging in vivo. Dorsal skin sections of hairless mice were exposed to UVB over 16 weeks. RBS consumption suppressed UVB-induced wrinkle formation and inhibited the loss of water content and epidermal thickening in the mouse skin. Western blot and immunohistochemical analyses revealed that repeated exposure to UVB upregulated matrix metalloproteinase-13 (MMP-13) and cyclooxygenase-2 (COX-2) expression, while consumption of RBS suppressed MMP-13 and COX-2 expression, as well as mitogen-activated protein kinase (MAPK) signaling pathways. These findings suggest that RBS could be a potential bioactive ingredient in nutricosmetics to inhibit wrinkle formation and water content loss via the suppression of COX-2 and MMP-13 expression.  相似文献   

9.
The skin is the primary target of prolonged and repeated ultraviolet (UVB) irradiation which induces cutaneous inflammation and pigmentation. Nuclear factor κB (NF-κB) is the major factor mediating UVB-induced inflammatory responses through the expression of various proinflammatory proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We have previously reported that the synthetic novel compound 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) strongly suppressed tyrosinase activity and melanin synthesis in B16F10 melanoma cells. In the present study, we investigated the effect of MHY884 on the inhibition of UVB-induced NF-κB activation and its proinflammatory downstream proteins through the suppression of oxidative stress in an in vivo model of photoaging. Generation of reactive oxygen species (ROS) and peroxynitrite was measured in vitro and in B16F10 melanoma cells to verify the scavenging activity of MHY884. MHY884 suppressed oxidative stress both in vitro and in the melanoma cells in a dose-dependent manner. Next, melanin-possessing hairless mice were pre-treated with MHY884 and then irradiated with UVB repeatedly. Topical application of MHY884 attenuated UVB-induced oxidative stress, resulting in reduced NF-κB activity. Pre-treatment with MHY884 inhibited Akt and IκB kinase α/β signaling pathways, leading to decreased translocation and phosphorylation of p65, a subunit of NF-κB. This result correlated with the expression levels of iNOS and COX-2 in the skin of MHY884-treated mice. Thus, the novel tyrosinase inhibitor MHY884 suppressed NF-κB activation signaling pathway by scavenging UVB-induced oxidative stress. The discovery of MHY884, a novel tyrosinase inhibitor that targets NF-κB signaling, is significant, because this compound is a promising protective agent against UVB-induced skin damage.  相似文献   

10.
Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H(2)O(2) formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-kappaB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-kappaB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-kappaB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.  相似文献   

11.
The c-Jun N-terminal kinase (JNK) pathway was reported to be involved in myostatin signaling and MKK4 was suggested as the only upstream kinase for myostatin-induced JNK activation, implying that MKK4 is a suitable target of RNA interference (RNAi) for blocking myostatin activity. The aim of this study was to evaluate the effect of small interfering RNA (siRNA) targeted against MKK4 on myostatin-induced downregulation of differentiation marker gene expression. Real-time quantitative PCR revealed that the level of MKK4 expression was efficiently reduced by MKK4-specific siRNA. Western blot assays showed that knockdown of MKK4 attenuated the myostatin-induced downregulation of MyoD and myogenin expression.  相似文献   

12.
Park SA  Na HK  Surh YJ 《Free radical research》2012,46(8):1051-1057
Excess estrogen stimulates the proliferation of mammary epithelial cells and hence represents a major risk factor for breast cancer. Estrogen is subjected to cytochrome P450-catalysed oxidative metabolism to produce an oncogenic catechol estrogen, 4-hydroxyestradiol (4-OHE?). 4-OHE? undergoes redox cycling during which reactive oxygen species (ROS) as well as the chemically reactive estrogen semiquinone and quinone intermediates are produced, thereby contributing to hormonal carcinogenesis. Resveratrol (3,4',5-trihydroxy stilbene), a phytoalexin present in grapes, has been reported to possess chemopreventive and chemotherapeutic activities. In the present study, we examined the inhibitory effects of resveratrol on 4-OHE?-induced transformation of human breast epithelial MCF-10A cells. Resveratrol inhibited migration and anchorage-independent growth of MCF-10A cells treated with 4-OHE?. Resveratrol treatment suppressed the 4-OHE?-induced activation of IκB kinaseβ (IKKβ) and phosphorylation of IκBα, and consequently NF-κB DNA binding activity and cyclooxygenase-2 (COX-2) expression. Resveratrol suppressed ROS production and phosphorylation of Akt and ERK induced by 4-OHE? treatment. In conclusion, resveratrol blocks activation of IKKβ-NF-κB signalling and induction of COX-2 expression in 4-OHE?-treated MCF-10A cells, thereby suppressing migration and transformation of these cells.  相似文献   

13.
14.
15.
In response to ultraviolet B damage, keratinocytes undergo apoptosis to eliminate damaged cells, thereby preventing tumorigenic transformation. Caffeine, the most widely consumed psychoactive substance, produces complex pharmacological actions; it has been shown to be chemopreventive in non-melamona skin cancer in mice through increasing apoptosis. Here we have investigated the molecular and cellular mechanisms in the pro-apoptotic effect of caffeine on UVB-irradiated human HaCaT keratinocytes. Pretreatment with caffeine increased UVB-induced apoptosis in HaCaT cells. Caffeine blocked UVB-induced Chk1 phosphorylation. In addition, similar to the effect of the PI3K inhibitor LY294002, caffeine also inhibited phosphorylation of AKT and up-regulation of COX-2, two critical oncogenic pathways in skin tumorigenesis. However, phosphorylation of EGFR or ERK was unaffected. Inhibiting ATR pathways by siRNA targeting ATR had little effect on UVB-induced apoptosis or AKT activation, indicating that the inhibitory effect of caffeine on apoptosis and the AKT pathway does not require the ATR pathway. Inhibiting AKT by caffeine blocked UVB-induced COX-2 up-regulation. Expression of constitutively active AKT that was not inhibited by caffeine was found to protect cells from caffeine-promoted apoptosis post-UVB irradiation, indicating that AKT is an essential inhibitory target for caffeine to promote apoptosis. Caffeine specifically sensitized cells with unrepaired DNA damage to UVB-induced apoptosis. These findings indicate that in HaCaT keratinocytes, inhibiting the AKT/COX-2 pathways through an ATR-independent pathway is a critical molecular mechanism by which caffeine promotes UVB-induced apoptosis of unrepaired keratinocytes for elimination.  相似文献   

16.
Ultraviolet B (UVB) irradiation induces skin damage and inflammation. One way to reduce the inflammation is via the use of molecules termed photochemopreventive agents. Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SF), which is found in cruciferous vegetables, is known for its potent physiological properties. This study was designed to evaluate the effect of SF on skin inflammation in vitro and in vivo. In in vitro study using immortalized human keratinocytes (HaCaT), UVB caused marked inflammatory responses [i.e., decrease of HaCaT viability and increase of production of an inflammatory marker interleukin-6 (IL-6)]. SF recovered the cell proliferation and suppressed the IL-6 production. These anti-inflammatory effects of SF were explained by its ability to reduce UVB-induced inflammatory gene expressions [IL-6, IL-1β and cyclooxgenase-2 (COX-2)]. Because SF seems to have an impact on COX-2 expression, we focused on COX-2 and found that SF reduced UVB-induced COX-2 protein expression. In support of this, PGE2 released from HaCaT was suppressed by SF. Western blot analysis revealed that SF inhibited p38, ERK and SAPK/JNK activation, indicating that the inhibition of mitogen-activated protein kinases (MAPK) by SF would attenuate the expression of inflammatory mediators (e.g., COX-2), thereby reducing inflammatory responses. Moreover, we conducted skin thickening assay using HR-1 hairless mice and found that UVB-induced skin thickness, COX-2 protein expression and hyperplasia were all suppressed by feeding SF to the mice. These results suggest that SF has a potential use as a compound for protection against UVB-induced skin inflammation.  相似文献   

17.
Lemongrass is a widely used herb as a food flavoring, as a perfume, and for its analgesic and anti-inflammatory purposes; however, the molecular mechanisms of these effects have not been elucidated. Previously, we identified carvacrol from the essential oil of thyme as a suppressor of cyclooxygenase (COX)-2, a key enzyme for prostaglandin synthesis, and also an activator of peroxisome proliferator-activated receptor (PPAR), a molecular target for “lifestyle-related” diseases. In this study, we evaluated the essential oil of lemongrass using our established assays for COX-2 and PPARs. We found that COX-2 promoter activity was suppressed by lemongrass oil in cell-based transfection assays, and we identified citral as a major component in the suppression of COX-2 expression and as an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to citral treatment. In human macrophage-like U937 cells, citral suppressed both LPS-induced COX-2 mRNA and protein expression, dose-dependently. Moreover, citral induced the mRNA expression of the PPARα-responsive carnitine palmitoyltransferase 1 gene and the PPARγ-responsive fatty acid binding protein 4 gene, suggesting that citral activates PPARα and γ, and regulates COX-2 expression. These results are important for understanding the anti-inflammatory and anti-lifestyle-related disease properties of lemongrass.  相似文献   

18.
19.
MAP2K4 encodes a dual-specificity kinase (mitogen-activated protein kinase kinase 4, or MKK4) that is mutated in a variety of human malignancies, but the biochemical properties of the mutant kinases and their roles in tumorigenesis have not been fully elucidated. Here we showed that 8 out of 11 cancer-associated MAP2K4 mutations reduce MKK4 protein stability or impair its kinase activity. On the basis of findings from bioinformatic studies on human cancer cell lines with homozygous MAP2K4 loss, we posited that MKK4 functions as a tumor suppressor in lung adenocarcinomas that develop in mice owing to expression of mutant Kras and Tp53. Conditional Map2k4 inactivation in the bronchial epithelium of mice had no discernible effect alone but increased the multiplicity and accelerated the growth of incipient lung neoplasias induced by oncogenic Kras. MKK4 suppressed the invasion and metastasis of Kras-Tp53-mutant lung adenocarcinoma cells. MKK4 deficiency increased peroxisomal proliferator-activated receptor γ2 (PPARγ2) expression through noncanonical MKK4 substrates, and PPARγ2 enhanced tumor cell invasion. We conclude that Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing PPARγ2 levels.  相似文献   

20.
Activation of activator protein-1 (AP-1) and increased expression of cyclooxygenase-2 (COX-2) have been clearly shown to play a functional role in UVB-induced skin tumor promotion. In this study, we examined UVB-induced signal transduction pathways in SKH-1 mouse epidermis leading to increases in COX-2 expression and AP-1 activity. We observed rapid increases in p38 mitogen-activated protein kinase (MAPK) signaling through activation of p38 MAPK and its downstream target, MAPK activated protein kinase-2. UVB also increased phosphatidylinositol 3-kinase (PI3K) signaling as observed through increases in AKT and GSK-3beta phosphorylation. Activation of the p38 MAPK and PI3K pathways results in the phosphorylation of cyclic AMP-responsive element binding protein, which was also observed in UVB-irradiated SKH-1 mice. Topical treatment with SB202190 (a specific inhibitor of p38 MAPK) or LY294002 (a specific inhibitor of PI3K) significantly decreased UVB-induced AP-1 activation by 84% and 68%, respectively, as well as COX-2 expression. Our data show that in mouse epidermis, UVB activation of the p38 MAPK and PI3K pathways leads to AP-1 activation and COX-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号