首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of autologous stem cell transplantation (SCT) and novel drugs has improved overall survival in multiple myeloma (MM) patients. However, minimal residual disease (MRD) remains and most patients eventually relapse. Myeloma plasma cells express tumor-associated antigens (TAA), which are interesting targets for immunotherapy. In this phase 1 study, we investigated the safety and immunological effects of TAA-mRNA-loaded dendritic cell (DC) vaccination for treatment for MRD in MM after SCT. Mature monocyte-derived DCs were pulsed with keyhole limpet hemocyanin (KLH) and electroporated with MAGE3, Survivin or B-cell maturation antigen (BCMA) mRNA. Twelve patients were vaccinated three times with intravenous (5–22 × 106 DCs) and intradermal vaccines (4–11 × 106 DCs), at biweekly intervals. Immunological responses were monitored in blood and delayed-type hypersensitivity (DTH) biopsies. All patients developed strong anti-KLH T-cell responses, but not KLH antibodies. In 2 patients, vaccine-specific T cells were detected in DTH biopsies. In one patient, we found MAGE3-specific CD4+ and CD8+ T cells, and CD3+ T cells reactive against BCMA and Survivin. In the other patient, we detected low numbers of MAGE3 and BCMA-reactive CD8+ T cells. Vaccination was well tolerated with limited toxicity. These findings illustrate that TAA-mRNA-electroporated mature DCs are capable of inducing TAA-T-cell responses in MM patients after SCT.  相似文献   

2.
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.  相似文献   

3.
Immunotherapy of cancer with dendritic-cell-based vaccines   总被引:32,自引:0,他引:32  
 Animal studies have shown that vaccination with genetically modified tumor cells or with dendritic cells (DC) pulsed with tumor antigens are potent strategies to elicit protective immunity in tumor-bearing animals, more potent than “conventional” strategies that have been tested in clinical settings with limited success. While both vaccination strategies are forms of cell therapy requiring complex and costly ex vivo manipulations of the patient’s cells, current protocols using dendritic cells are considerably simpler and would be more widely available. Vaccination with defined tumor antigens presented by DC has obvious appeal. However, in view of the expected emergence of antigen-loss variants as well as natural immunovariation, effective vaccine formulations must contain mixtures of commonly, if not universally, expressed tumor antigens. When, or even if, such common tumor antigens will be identified cannot be, predicted, however. Thus, for the foreseeable future, vaccination with total-tumor-derived material as source of tumor antigens may be preferable to using defined tumor antigens. Vaccination with undefined tumor-derived antigens will be limited, however, by the availability of sufficient tumor tissue for antigen preparation. Because the mRNA content of single cells can be amplified, tumor mRNA, or corresponding cDNA libraries, offer an unlimited source of tumor antigens. DC transfected with tumor RNA were shown to engender potent antitumor immunity in animal studies. Thus, immunotherapy using autologous DC loaded with unfractionated tumor-derived antigens in the form of RNA emerges as a potentially powerful and broadly useful vaccination strategy for cancer patients. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

4.
Tumor-specific memory T cells are detectable in the bone marrow (BM) of a majority of breast cancer patients. In vitro they can be reactivated to IFN-γ producing, cytotoxic effector cells and reject autologous, xenotransplanted tumors in NOD/SCID mice after specific restimulation with autologous dendritic cells (DC). In this study, we demonstrate the presence of specific tumor-reactive BM memory T cells in altogether 56 out of 129 primarily operated breast cancer patients by short-term IFN-γ EliSpot assays with unstimulated T cells and tumor antigen presenting, autologous DCs. We observed tumor-reactive BM memory T cells predominantly in patients with primarily metastatic disease (P = 0.011) or with increased concentrations of tumor marker CA 15-3 in the peripheral blood (P = 0.004), respectively. Memory T cell reactivity against HLA-A*0201-restricted peptides from the tumor-associated antigens MUC1, Hpa16–24 and Hpa183–191 was also detected particularly in patients with elevated peripheral CA 15-3 concentrations (P < 0.05). Altogether these data indicate that the systemic presence of tumor-derived antigens promotes an induction of tumor-specific cellular immune responses in the human BM.  相似文献   

5.
For cancer immunotherapy the loading of dendritic cells (DCs) with whole tumor cell lysate preparations represents a simple and promising approach for presentation of tumor-associated antigens (TAAs), avoiding the disadvantages of HLA-matching and definition of TAAs. The aim of this study was to investigate whether lysate-pulsed DCs efficiently cross-prime CD8+ T cells and induce a strong T(H)1 cell response, as compared to DCs pulsed with specific peptides (FLU M1 and Melan-A/Mart-1). As a model system breast carcinoma cell lysate from either MCF-7 or MDA-MB-231 cell lines (both HLA-A*0201+) expressing the TAA MUC1 were selected. Both cell lines expressed MUC1, the epithelial mucin, which is a large molecular weight O-glycosylated protein expressed in the majority of breast, ovarian, and other epithelial malignancies and is under evaluation as a target antigen in cancer immunotherapy. We developed a simple lysate preparation method to solubilize all cell proteins without degradation. For loading of monocyte-derived dendritic cells, 100 microgmL(-1) of breast carcinoma cell lysate was used, accompanied by an adjuvant consisting of tumor necrosis factor-alpha (TNF-alpha) and prostaglandin-E2. T cells were co-cultivated with lysate or peptide pulsed DCs and were restimulated weekly. Before cultivation, and after the 3rd stimulation, tetramer frequencies for the MUC1 epitopes M1.2 and F7 as well as for the FLU M1 and Melan-A/Mart-1 epitopes were determined. After stimulation with lysate, higher frequencies for M1.2-specific T cells were observed compared with the F7 epitope. Furthermore, we found expansion factors for M1.2-specific T cells that had been stimulated with MCF-7 lysate-pulsed DCs of up to 43-fold. The analysis of typical T(H)1/T(H)2 cytokines (IFN-gamma, TNF-alpha, IL-12p70, IL-2, IL-4, IL-5, and IL-10) revealed a strong T(H)1 response. These results provide evidence for a strong T(H)1 polarization and cross-priming of MUC1-specific CD8+ T cells and demonstrate the feasibility of using lysate-pulsed dendritic cells in breast cancer immunotherapy.  相似文献   

6.
Background  Focal adhesion kinase (FAK) is a ubiquitously expressed non-receptor tyrosine kinase involved in cancer progression and metastasis that is found overexpressed in a large number of tumors such as breast, colon, prostate, melanoma, head and neck, lung and ovary. Thus, FAK could be an attractive tumor associated antigen (TAA) for developing immunotherapy against a broad type of malignancies. In this study, we determined whether predicted T cell epitopes from FAK would be able to induce anti-tumor immune cellular responses. Methods  To validate FAK as a TAA recognized by CD4 helper T lymphocytes (HTL), we have combined the use of predictive peptide/MHC class II binding algorithms with in vitro vaccination of CD4 T lymphocytes from healthy individuals and melanoma patients. Results  Two synthetic peptides, FAK143–157 and FAK1,000–1,014, induced HTL responses that directly recognized FAK-expressing tumor cells and autologous dendritic cells pulsed with FAK-expressing tumor cell lysates in an HLA class II-restricted manner. Moreover, since the FAK peptides were recognized by melanoma patient’s CD4 T cells, this is indicative that T cell precursors reactive with FAK already exist in peripheral blood of these patients. Conclusions  Our results provide evidence that FAK functions as a TAA and describe peptide epitopes that may be used for designing T cell-based immunotherapy for FAK-expressing cancers, which could be used in combination with newly developed FAK inhibitors.  相似文献   

7.
Anti-tumor immunotherapy based on dendritic cells   总被引:2,自引:0,他引:2  
In cancer immunotherapy, the use of dendritic cells (DC) loaded with tumor-associated antigens (TAA) emerged as a promising strategy. We initiated 3 pilot clinical trials with immunological endpoints using TAA loaded autologous DC. These trials showed that this approach was safe and associated with the induction of potent TAA specific IFN-gamma responses, which were transient despite the providing a further help through KLH presentation. Subcutaneous (s.c.) IL-2 administration was associated with long-lasting TAA specific IL-5 production. Clinical responses were observed in about 1/3 of the patients. Further improvements will take advantage of the use of a new type of DC cells (IL-3/IFN-beta DC) and of tumor cell-DC hybrids.  相似文献   

8.
Previous studies have suggested that immunotherapy with dendritic cell (DC) vaccines may be effective in treatment of patients with AJCC stage IV melanoma. We examined this treatment in phase I/II studies in 33 patients with good performance status and low volume disease. Nineteen patients received DCs plus autologous lysates and 14 patients DCs plus peptides from the melanoma antigens MAGE-3.A2, tyrosinase, gp100, and MART-1. Keyhole limpet hemocyanin (KLH) was used as a helper protein and influenza peptide was given as a positive control. DCs were produced from adherent cells in blood lymphocytes (monocytic DCs), grown in IL-4 and GM-CSF without a maturation step. The DCs were injected into inguinal lymph nodes at weekly intervals (×4), 2 weeks (×1), and 4-weekly intervals (×2). There were 3 responses (3 partial responses) and 1 mixed response in the 19 patients treated with DCs plus autologous lysates. No responses were seen in the group treated with DCs plus peptides. Stable disease (defined as no progression over a period of 3 months) was seen in 4 patients in group 1 and 5 patients in group 2. Treatment was not associated with significant side effects. We examined whether DTH skin tests or assays of IFN- cytokine production may be useful predictors of clinical responses. Twenty-two of 30 patients had DTH responses to KLH and 12 of 13 patients had DTH responses to the influenza peptide. Five of 15 DTH responses were seen against autologous lysates. This was strongly correlated with clinical responses. Approximately half the patients had responses to MART-1 peptide and a third to the other melanoma peptides. Similarly, cytokine production assays showed responses to influenza in 7 of 13 patients, and approximately one third of patients had responses to the other peptides. No IFN- responses were seen in 5 patients against their autologous lysates. There was no correlation between assays of IFN- production and clinical responses. The present studies suggest that autologous lysates may be more effective than the melanoma peptides used in the study as the source of antigen for DC vaccines. DTH responses to autologous lysates appear useful predictors of clinical responses, but further work is needed to identify other measures associated with clinical responses.Abbreviations DC dendritic cells - DTH delayed hypersensitivity skin tests - KLH keyhole limpet hemocyanin - CTL cytotoxic T lymphocytes  相似文献   

9.
Immunotherapy of malignant diseases mediated by dendritic cells (DC) pulsed with tumor antigens ex vivo is a promising new tool in the individual treatment of malignant diseases. The present study focuses on the problem of how to optimize in vitro culture conditions and induce the maturation of DC with the capacity to induce antitumor immunity toward leukemic cells. DC were generated from peripheral mononuclear cells by co-cultivation with granulocyte/macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Tumor antigens were added for 2 h after 7 days in culture. Irradiated leukemic blasts, blast lysate, apoptotic cells from the Jurkat cell line (T ALL) and their lysate were used in various concentrations for antigen pulsing. Harvested DC were phenotyped by flow cytometry, and viability was assessed using trypan blue exclusion (Annexin test). After the cells had been pulsed with tumor antigens and co-cultured with autologous lymphocytes, the production of interferon-gamma (IFN-gamma) and IL-12 was analyzed, and lymphocyte proliferative response and cytotoxicity against the target tumor cell line were assessed. The cultivation of monocytes under the described conditions led to the expression of surface markers typical of DC (i.e. CD83, CD86, HLA-DR, CD11c and CD40). Pulsation by antigens from leukemic cells further increased the cell populations expressing these markers. Antigen pulsation decreased the viability of generated DC depending on the increase in concentration of tumor antigens. Pulsed DC-lymphocyte interaction increased the proliferative response of lymphocytes and IFN-gamma production depending on the type of tumor antigens used for pulsation. The highest proliferative response was detected with DC pulsed with Jurkat cell-line lysate. Similarly to the proliferation assay, cytotoxic testing showed the highest efficiency of DC pulsed with Jurkat cell-line lysate in killing the target malignant cells. Our results show that an appropriate antigen concentration used for DC pulsing is one of the crucial factors in an effective treatment strategy, as high concentrations of tumor antigens induce apoptosis of DC, thereby rendering them non-functional. Under optimal conditions, pulsation by lysate from leukemic blasts induced the maturation of DC and led to an increase in the proliferation of autologous lymphocytes, to the production of Th1-cytokines and to the induction of cytotoxicity toward the leukemic cell line. These results are encouraging for the possible application of pulsed DC in the therapy of acute lymphoblastic leukemia.  相似文献   

10.
Background: Dendritic cell (DC)-based immunotherapy is a promising approach to augment tumor antigen-specific T cell responses in cancer patients. However, tumor escape with down-regulation or complete loss of target antigens may limit the susceptibility of tumor cells to the immune attack. Concomitant generation of T cell responses against several immunodominant antigens may circumvent this potential drawback. In this trial, we determined the immunostimulatory capacity of autologous DC pulsed with multiple T cell epitopes derived from four different prostate-specific antigens in patients with advanced hormone-refractory prostate cancer. Patients and methods: Autologous DC of HLA-A*0201+ patients with hormone-refractory prostate cancer were loaded with antigenic peptides derived from prostate stem cell antigen (PSCA14–22), prostatic acid phosphatase (PAP299–307), prostate-specific membrane antigen (PSMA4–12), and prostate-specific antigen (PSA154–163). DC were intradermally applied six times at biweekly intervals followed—in the case of an enhanced immune response—by monthly booster injections. Immune monitoring during the time of ongoing vaccinations (12–59 weeks) included ex vivo ELISPOT measurements, MHC tetramer analysis and in vitro cytotoxicity assays. Results: Of the initial six patients, three qualified for long-term multi-epitope DC vaccination. This regime was tolerated well by all three patients. The vaccination elicited significant cytotoxic T cell responses against all prostate-specific antigens tested. In addition, memory T cell responses against the control peptides derived from influenza matrix protein and tetanus toxoid were efficiently boosted. Clinically, the long-term DC vaccination was associated with an increase in PSA doubling time. Conclusions: DC-based multi-epitope immunotherapy with repeated boosting in men with hormone-refractory prostate carcinoma is feasible and generates efficient cellular antitumor responses. Grant sponsors: Cancer League St. Gallen-Appenzell; Swiss Cancer League; Foundation Propter Homines Vaduz Liechtenstein; Cancer Research Institute USA; Foundation for Clinical Cancer Research of Eastern Switzerland (OSKK)  相似文献   

11.
To develop an efficient antitumor immunotherapy, we have examined if dendritic cells (DCs) loaded with soluble antigens by electroporation present more antigens via the MHC (major histocompatibility complex) class I pathway, which mediate a cytotoxic T-cell response. DCs loaded with ovalbumin (OVA) by electroporation presented more MHC class I–restricted determinants compared with DCs pulsed with OVA. When electroporated DCs were pulsed with OVA for additional times, both MHC class I– and II–restricted presentation of OVA were increased compared with each single procedure, including electroporation or simple pulse. Immunization with DCs loaded with OVA by electroporation induced higher cytotoxicity of splenocytes to E.G7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with DCs pulsed with OVA. In the animal study, immunization with DCs loaded with OVA or tumor cell lysates by electroporation induced an effective antitumor immunity against tumor of E.G7 cells or Lewis lung carcinoma cells, respectively. In addition, immunization with DCs loaded with antigen by combination of electroporation and pulse, completely protected mice from tumor formation, and prolonged survival, in both tumor models. These results demonstrated that electroporation would be a useful way to enhance MHC class I–mediated antitumor immunity without functional deterioration, and that the combination of electroporation and pulse could be a simple and efficient antigen-loading method and consequently lead to induction of strong antitumor immunity.Abbreviations DCs dendritic cells - MHC major histocompatibility complex - OVA ovalbumin - TAA tumor-associated antigen - CTL cytotoxic T lymphocyte - LDH lactate dehydrogenase  相似文献   

12.
Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.  相似文献   

13.
Dendritic cell (DC)-based immunotherapy is a potent therapeutic modality for treating renal cell carcinoma (RCC), but development of antigens specific for tumor-targeting and anti-tumor immunity is of great interest for clinical trials. The present study investigated the ability of DCs pulsed with a combination of carbonic anhydrase IX (CA9) as an RCC-specific biomarker and Acinetobacter baumannii outer membrane protein A (AbOmpA) as an immunoadjuvant to induce anti-tumor immunity against murine renal cell carcinoma (RENCA) in a murine model. Murine bone-marrow-derived DCs pulsed with a combination of RENCA lysates and AbOmpA were tested for their capacity to induce DC maturation and T cell responses in vitro. A combination of RENCA lysates and AbOmpA up-regulated the surface expression of co-stimulatory molecules, CD80 and CD86, and the antigen presenting molecules, major histocompatibility (MHC) class I and class II, in DCs. A combination of RENCA lysates and AbOmpA also induced interleukin-12 (IL-12) production in DCs. Next, the immunostimulatory activity of DCs pulsed with a combination of CA9 and AbOmpA was determined. A combination of CA9 and AbOmpA up-regulated the surface expression of co-stimulatory molecules and antigen presenting molecules in DCs. DCs pulsed with a combination of CA9 and AbOmpA effectively secreted IL-12 but not IL-10. These cells interacted with T cells and formed clusters. DCs pulsed with CA9 and AbOmpA elicited the secretion of interferon-γ and IL-2 in T cells. In conclusion, a combination of CA9 and AbOmpA enhanced the immunostimulatory activity of DCs, which may effectively induce anti-tumor immunity against human RCC.  相似文献   

14.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

15.
Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system capable of initiating immune responses to antigens. It is also well documented that cancer patients often experience anergy against tumor antigens. In this study we selected the best protocol for inducing the production of antibodies against the HER2 oncoprotein using DCs to overcome anergy. Murine DCs were pulsed in vitro, using different protocols, with recombinant HER2 fused to a human Fc (in order to improve DC antigen uptake) and were used to vaccinate mice. The obtained results indicate that antigen-pulsed DCs can induce an antibody response and that adding CpG after antigen pulsing greatly increases anti-HER2 antibody production.  相似文献   

16.
Dendritic cells (DCs) transfected with mRNA encoding tumor-associated antigens (TAAs) can induce tumor-specific T-cell responses. To potentiate this, we transfected mature DCs (mDCs) with mRNA encoding TAA targeted to the proteasome. DCs were generated from bone marrow cells by culture with 20 ng/ml GM-CSF and maturation with 1 μg/ml LPS. These mDCs were then electroporated with 10 μg of mRNA. Antigen presentation after electroporation with in vitro transcribed mRNA was compared with mRNA from a construct of the TAA preceded by ubiquitin. Proteasomal targeting of mRNA encoding cotranslationally ubiquitinated antigen was found to enhance intracellular degradation of target protein, and result in more efficient priming and expansion of TAA-specific CD8+ T-cells. We therefore suggest that RNA-transfected DC vaccine efficacy could be improved by the use of mRNA targeted to the proteasome.  相似文献   

17.
Xia D  Moyana T  Xiang J 《Cell research》2006,16(3):241-259
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.  相似文献   

18.
The product of Wilms‘ tumor gene 1 (WT1) is overexpressed in diverse human tumors, including leukemia, lung and breast cancer, and is often recognized by antibodies in the sera of patients with leukemia. Since WT1 encodes MHC class I-restricted peptides recognized by cytotoxic T lymphocytes (CTL), WT1 has been considered as a promising tumor-associated antigen (TAA) for developing anticancer immunotherapy. In order to carry out an effective peptide-based cancer immunotherapy, MHC class II-restricted epitope peptides that elicit anti-tumor CD4+ helper T lymphocytes (HTL) will be needed. In this study, we analyzed HTL responses against WT1 antigen using HTL lines elicited by in vitro immunization of human lymphocytes with synthetic peptides predicted to serve as HTL epitopes derived from the sequence of WT1. Two peptides, WT1124–138 and WT1247–261, were shown to induce peptide-specific HTL, which were restricted by frequently expressed HLA class II alleles. Here, we also demonstrate that both peptides-reactive HTL lines were capable of recognizing naturally processed antigens presented by dendritic cells pulsed with tumor lysates or directly by WT1+ tumor cells that express MHC class II molecules. Interestingly, the two WT1 HTL epitopes described here are closely situated to known MHC class I-restricted CTL epitopes, raising the possibility of stimulating CTL and HTL responses using a relatively small synthetic peptide vaccine. Because HTL responses to TAA are known to be important for promoting long-lasting anti-tumor CTL responses, the newly described WT1 T-helper epitopes could provide a useful tool for designing powerful vaccines against WT1-expressing tumors.  相似文献   

19.

Background

Dendritic cells (DC) pulsed with MHC class I-restricted tumour associated antigen (TAA) peptides have been widely tested in pre-clinical models and early clinical studies for their ability to prime cytotoxic T cell (CTL) responses. The effect of co-expression of allogeneic MHC antigens on DC immunogenicity has not been addressed, and has implications for the feasibility of clinical applications.

Objective

This study compared DC from autologous H-2b or semi-allogeneic F1 H-2bxk mice pulsed with the H-2b-restricted model ovalbumin (OVA) peptide SIINFEKL, and compared in vitro and in vivo their ability to (i) activate specific OT1 cells, (ii) prime naïve CTL, and (iii) protect against B16.OVA challenge. Peptide-pulsed autologous and allogeneic DC were also tested in naïve human CTL priming assays.

Results

Semi-allogeneic DC expressed higher levels of co-stimulatory molecules. On pulsing with SIINFEKL they triggered greater proliferation of OT1 cells in vitro and in vivo, but were less effective at naïve CTL priming and tumour protection. Autologous human DC were similarly more potent at naïve CTL priming against the melanoma-associated TAA MART-1 in vitro.

Conclusion

The expression of allogeneic MHC antigens on peptide-pulsed DC impairs naïve CTL priming and anti-tumour effects, despite effective TAA presentation both in vitro and in vivo.
  相似文献   

20.
MAGE-3原核表达载体的构建和表达   总被引:1,自引:0,他引:1  
通过RT-PCR扩增957bp的MAGE-3全长编码序列,将该片段克隆至Pgex-4T-2原核表达载体,转化大肠杆菌BL-21,经IPTG诱导表达,并经12%SDSPAGE凝胶电泳,考马斯亮蓝染色及Western blot鉴定,证明了目的基因的有效表达,目的蛋白高达细菌总蛋白的32%。表达产物经Glutathione Sepharose 4B 纯化后,每100mL菌液最终可获得3mg的目的蛋白,蛋白纯度在90%以上。纯化的GST-MAGE-3蛋白在体外冲击树突状细胞,能诱导特异性CTL杀伤肿瘤细胞活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号