首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
AIMS: To determine the effect of biotic and abiotic components of soil on the viability and infectivity of Cryptosporidium parvum, and evaluate the suitability of viability tests as a surrogate for oocyst infectivity under various environmental settings. METHODS AND RESULTS: The die-off of C. parvum in saturated and dry loamy soil was monitored over time by immunofluorescence assay (IFA) and PCR to estimate oocysts viability and by cell culture to estimate oocysts infectivity. Pseudomonas aeruginosa activity resulted in digestion of the outer layer of the oocysts, as demonstrated by loss of the ability to react in IFA. Whereas, P. aeruginosa activity did not affect the DNA amplification by PCR. A 1-log reduction in the oocysts infectivity was observed at 30 degrees C in distilled water and in saturated soil while oocysts viability was unchanged. Incubation for 10 days in dry loamy soil at 32 degrees C resulted in a 3-log(10) reduction in their infectivity while no change of oocysts viability was recorded. CONCLUSIONS: Under low temperature, C. parvum oocysts may retain their infectivity for a long time. Soil desiccation and high temperatures enhance the die-off rate of C. parvum. SIGNIFICANCE AND IMPACT OF THE STUDY: Previous die-off studies of C. parvum used viability tests that do not necessarily reflect the oocyst infectivity. Under low temperatures, there was an agreement observed between viability and infectivity tests and oocysts retained their infectivity for a long time. Desiccation and high temperatures enhance the loss of infectivity of C. parvum. The presented die-off data have significant implications on the management of wastewater reuse in warm environments.  相似文献   

3.
Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4',6'-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.  相似文献   

4.
5.
6.
The purpose of this study was to characterize the viral symbiont (CPV) of Cryptosporidium parvum sporozoites and evaluate the CPV capsid protein (CPV40) as a target for sensitive detection of the parasite. Recombinant CPV40 was produced in Escherichia coli, purified by affinity chromatography, and used to prepare polyclonal rabbit sera specific for the viral capsid protein. Anti-rCPV40 recognized a 40 kDa and a 30 kDa protein in C. parvum oocysts and appeared to localize to the apical end of the parasite. Anti-rCPV40 serum was capable of detecting as few as 1 C. parvum oocyst in a dot blot assay, the sensitivity being at least 1000-fold greater than sera reactive with total native C. parvum oocyst protein or specific for the 41 kDa oocyst surface antigen. Water samples were seeded with C. parvum oocysts and incubated at 4, 20, or 25 degrees C for greater than 3 months to determine if CPV levels were correlated with oocyst infectivity. Samples were removed monthly and subjected to mouse and cell culture infectivity, as well as PCR analysis for infectivity and viral particle presence. While sporozoite infectivity declined by more than 75% after 1 month at 25 degrees C, the CPV signal was similar to that of control samples at 4 degrees C. By 3 months at 20 degrees C, the C. parvum oocysts were found to be non-infectious, but retained a high CPV signal. This study indicates that CPV is an excellent target for sensitive detection of C. parvum oocysts in water, but may persist for an indefinite time after oocysts become non-infectious.  相似文献   

7.
Microbial contamination of public water supplies is of significant concern, as numerous outbreaks, including Cryptosporidium, have been reported worldwide. Detection and enumeration of Cryptosporidium parvum oocysts in water supplies is important for the prevention of future cryptosporidiosis outbreaks. In addition to not identifying the oocyst species, the U.S. EPA Method 1622 does not provide information on oocyst viability or infectivity. As such, current detection strategies have been coupled with in vitro culture methods to assess oocyst infectivity. In this study, a most probable number (MPN) method was coupled with PCR (MPN-PCR) to quantify the number of infectious oocysts recovered from seeded raw water concentrates. The frequency of positive MPN-PCR results decreased as the oocyst numbers decreased. Similar results were observed when MPN was coupled to the foci detection method (MPN-FDM), which was done for comparison. For both methods, infectious oocysts were not detected below 10(3) seeded oocysts and the MPN-PCR and MPN-FDM estimates for each seed dose were generally within one-log unit of directly enumerated foci of infection. MPN-PCR estimates were 0.25, 0.54, 0 and 0.66 log(10) units higher than MPN-FDM estimates for the positive control, 10(5), 10(4) and 10(3) seed doses, respectively. The results show the MPN-PCR was the better method for the detection of infectious C. parvum oocysts in environmental water samples.  相似文献   

8.
The ability to determine inactivation rates of Cryptosporidium parvum oocysts in environmental samples is critical for assessing the public health hazard of this gastrointestinal parasite in watersheds. We compared a dye permeability assay, which tests the differential uptake of the fluorochromes 4'-6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) by the oocysts (A. T. Campbell, L. J. Robertson, and H. V. Smith, Appl. Environ. Microbiol. 58:3488-3493, 1992), with an in vitro excystation assay, which tests their ability to excyst and, thus, their metabolic potential and potential for infectivity (J.B. Rose, H. Darbin, and C.P. Gerba, Water Sci. Technol. 20:271-276, 1988). Formaldehyde-fixed (killed) oocysts and untreated oocysts were permeabilized with sodium hypochlorite and subjected to both assays. The results of the dye permeability assays were the same, while the excystation assay showed that no excystation occurred in formaldehyde-fixed oocysts. This confirmed that oocyst wall permeability, rather than metabolic activity potential, was the basis of the dye permeability viability assessment. A previously developed protocol (L. J. Anguish and W. C. Ghiorse, Appl. Environ. Microbiol. 63:724-733, 1997) for determining viability of oocysts in soil and sediment was used to examine further the use of oocyst permeability status as an indicator of oocyst viability in fecal material stored at 4 degrees C and in water at various temperatures. Most of the oocysts in fresh calf feces were found to be impermeable to the fluorochromes. They were also capable of excystation, as indicated by the in vitro excystation assay, and were infective, as indicated by a standard mouse infectivity assay. The dye permeability assay further showed that an increase in the intermediate population of oocysts permeable to DAPI but not to PI occurred over time. There was also a steady population of oocysts permeable to both dyes. Further experiments with purified oocysts suspended in distilled water showed that the shift in oocyst populations from impermeable to partially permeable to fully permeable was accelerated at temperatures above 4 degrees C. This sequence of oocyst permeability changes was taken as an indicator of the oocyst inactivation pathway. Using the dye permeability results, inactivation rates of oocysts in two fecal pools stored in the dark at 4 degrees C for 410 and 259 days were estimated to be 0.0040 and 0.0056 oocyst day-1, respectively. The excystation assay gave similar inactivation rates of 0.0046 and 0.0079 oocyst day-1. These results demonstrate the utility of the dye permeability assay as an indicator of potential viability and infectivity of oocysts, especially when combined with improved microscopic methods for detection of oocysts in soil, turbid water, and sediments.  相似文献   

9.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

10.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

11.
Two mRNA extraction methods were compared in this study to clarify the discrepancies found between authors regarding the presence of mRNA in inactivated Cryptosporidium parvum oocysts. Cryptosporidium parvum heat shock protein 70 (hsp70) mRNA extraction was performed by using oligo(dT)20-labeled magnetic beads or by incubating oocyst lysates with DNase I. Significant differences in mRNA recovery rates between these 2 techniques were observed when working on inactivated oocysts. We consistently detected hsp70 mRNA in oocysts heated at 60 C for 30 min and oocysts incubated in 10% formalin for 2 hr when using DNase I in the mRNA extraction procedure. In contrast, no mRNA was detected in such oocysts when magnetic beads were used for the mRNA extraction. The selective capture of long poly-A tail mRNA, when using oligo(dT)20-labeled magnetic beads, is proposed in this paper for explaining the discrepancies observed between the two mRNA extraction methods compared in this study. DNA decay in inactivated and aging oocysts makes quantitative polymerase chain reaction a potential alternative technique for assessing C. parvum oocyst viability status in environmental samples.  相似文献   

12.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

13.
Current assay methods to detect Cryptosporidium oocysts in water are generally not able to evaluate viability or infectivity. A method was developed for low-level detection of infective oocysts by using HCT-8 cells in culture as hosts to C. parvum reproductive stages. The infective foci were detected by labeling intracellular developmental stages of the parasite in an indirect-antibody assay with a primary antibody specific for reproductive stages and a secondary fluorescein isothiocyanate-conjugated antibody. The complete assay was named the focus detection method (FDM). The infectious foci (indicating that at least one of the four sporozoites released from a viable oocyst had infected a cell) were enumerated by epifluorescence microscopy and confirmed under Nomarski differential interference contrast microscopy. Time series experiments demonstrated that the autoreinfective life cycle in host HCT-8 cells began after 12 h of incubation. Through dilution studies, levels as low as one infectious oocyst were detected. The cell culture FDM compared well to other viability assays. Vital stains and excystation demonstrated that oocyst populations less than 1% viable (by vital dyes) and having a low sporozoite yield following excystation could not infect host cells. Until now, the water industry has relied on an oocyst detection method (under an information collection regulation) that is unable to determine viability. The quantifiable results of the cell culture method described demonstrate two important applications: (i) an infectivity assay that may be used in conjunction with current U.S. Environmental Protection Agency-mandated detection methodologies, and (ii) a method to evaluate oocyst infectivity in survival and disinfection studies.  相似文献   

14.
Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number-cell culture infectivity assay and in vitro excystation to evaluate chlorine dioxide inactivation kinetics in laboratory water at pH 8 and 21 degrees C. The two viability methods produced significantly different results (P < 0.05). Products of disinfectant concentration and contact time (Ct values) of 1,000 mg. min/liter were needed to inactivate approximately 0.5 log(10) and 2.0 log(10) units (99% inactivation) of C. parvum as measured by in vitro excystation and cell infectivity, respectively, suggesting that excystation is not an adequate viability assay. Purified oocysts originating from three different suppliers were evaluated and showed marked differences with respect to their resistance to inactivation when using chlorine dioxide. Ct values of 75, 550, and 1,000 mg. min/liter were required to achieve approximately 2.0 log(10) units of inactivation with oocysts from different sources. Finally, the study compared the relationship between easily measured indicators, including Bacillus subtilis (aerobic) spores and Clostridium sporogenes (anaerobic) spores, and C. parvum oocysts. The bacterial spores were found to be more sensitive to chlorine dioxide than C. parvum oocysts and therefore could not be used as direct indicators of C. parvum inactivation for this disinfectant. In conclusion, it is suggested that future studies address issues such as oocyst purification protocols and the genetic diversity of C. parvum, since these factors might affect oocyst disinfection sensitivity.  相似文献   

15.
A rapid detection method that is both quantitative and specific for the water-borne human parasite Cryptosporidium parvum is reported. Real-time polymerase chain reaction (PCR) combined with fluorescent TaqMan technology was used to develop this sensitive and accurate assay. The selected primer-probe set identified a 138-bp section specific to a C. parvum genomic DNA sequence. The method was optimized on a cloned section of the target DNA sequence, then evaluated on C. parvum oocyst dilutions. Quantification was accomplished by comparing the fluorescence signals obtained from test samples of C. parvum oocysts with those obtained from standard dilutions of C. parvum oocysts. This real-time PCR assay allowed reliable quantification of C. parvum oocysts over six orders of magnitude with a baseline sensitivity of six oocysts in 2 h.  相似文献   

16.
A quantitative TaqMan PCR method was developed for assessing the Cryptosporidium parvum infection of in vitro cultivated human ileocecal adenocarcinoma (HCT-8) cell cultures. This method, termed cell culture quantitative sequence detection (CC-QSD), has numerous applications, several of which are presented. CC-QSD was used to investigate parasite infection in cell culture over time, the effects of oocyst treatment on infectivity and infectivity assessment of different C. parvum isolates. CC-QSD revealed that cell culture infection at 24 and 48 h postinoculation was approximately 20 and 60%, respectively, of the endpoint 72-h postinoculation infection. Evaluation of three different lots of C. parvum Iowa isolate oocysts revealed that the mean infection of 0.1 N HCl-treated oocysts was only 36% of the infection obtained with oocysts treated with acidified Hanks' balanced salt solution containing 1% trypsin. CC-QSD comparison of the C. parvum Iowa and TAMU isolates revealed significantly higher levels of infection for the TAMU isolate, which agrees with and supports previous human, animal, and cell culture studies. CC-QSD has the potential to aid in the optimization of Cryptosporidium cell culture methods and facilitate quantitative evaluation of cell culture infectivity experiments.  相似文献   

17.
Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25 degrees C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm(2) (=30 J/m(2)), the reduction reached the cell culture assay detection limit of approximately 3 log(10). At UV doses of 1.2 and 3 mJ/cm(2), the log(10) reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage.  相似文献   

18.
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.  相似文献   

19.
Several in vitro surrogates have been developed as convenient, user-friendly alternatives to mouse infectivity assays for determining the viability of Cryptosporidium parvum oocysts. Such viability assays have been used increasingly to determine oocyst inactivation following treatment with chemical, physical, or environmental stresses. Defining the relationship between in vitro viability assays and oocyst infectivity in susceptible hosts is critical for determining the significance of existing oocyst inactivation data for these in vitro assays and their suitability in future studies. In this study, four viability assays were compared with mouse infectivity assays, using neonatal CD-1 mice. Studies were conducted in the United States and United Kingdom using fresh (<1 month) or environmentally aged (3 months at 4 degrees C) oocysts, which were partially inactivated by ozonation before viability and/or infectivity analyses. High levels of variability were noted within and between the viability and infectivity assays in the U.S. and United Kingdom studies despite rigorous control over oocyst conditions and disinfection experiments. Based on the viability analysis of oocyst subsamples from each ozonation experiment, SYTO-59 assays demonstrated minimal change in oocyst viability, whereas 4',6'-diamidino-2-phenylindole-propidium iodide assays, in vitro excystation, and SYTO-9 assays showed a marginal reduction in oocyst viability. In contrast, the neonatal mouse infectivity assay demonstrated significantly higher levels of oocyst inactivation in the U.S. and United Kingdom experiments. These comparisons illustrate that four in vitro viability assays cannot be used to reliably predict oocyst inactivation following treatment with low levels of ozone. Neonatal mouse infectivity assays should continue to be regarded as a "gold standard" until suitable alternative viability surrogates are identified for disinfection studies.  相似文献   

20.
The importance of waterborne transmission of Cryptosporidium parvum to humans has been highlighted by recent outbreaks of cryptosporidiosis. The first step in a survey of contaminated water currently consists of counting C. parvum oocysts. Data suggest that an accurate risk evaluation should include a determination of viability and infectivity of counted oocysts in water. In this study, oocyst infectivity was addressed by using a suckling mouse model. Four-day-old NMRI (Naval Medical Research Institute) mice were inoculated per os with 1 to 1,000 oocysts in saline. Seven days later, the number of oocysts present in the entire small intestine was counted by flow cytometry using a fluorescent, oocyst-specific monoclonal antibody. The number of intestinal oocysts was directly related to the number of inoculated oocysts. For each dose group, infectivity of oocysts, expressed as the percentage of infected animals, was 100% for challenge doses between 25 and 1,000 oocysts and about 70% for doses ranging from 1 to 10 oocysts/animal. Immunofluorescent flow cytometry was useful in enhancing the detection sensitivity in the highly susceptible NMRI suckling mouse model and so was determined to be suitable for the evaluation of maximal infectivity risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号