首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
Apoptosis is an important cell suicide program which involves the caspases activation and is implicated in physiological and pathological processes. Poly(ADP-ribose) polymerase (PARP) cleavage is often associated with apoptosis and has been served as one hallmark of apoptosis and caspase activation. In this study, we aimed to determine TGF-beta1-induced apoptosis and to examine the involvement of caspases and its relationship with PARP cleavage. TGF-beta1 induces strong apoptosis of AML-12 cells which can be detected by DNA fragmentation, FACS, and morphological assays. Z-VAD-fmk, a selective caspase inhibitor, partially inhibits the TGF-beta1-induced apoptosis; but has no effect on TGF-beta1-induced DNA fragmentation and PARP cleavage. However, BD-fmk, a broad-spectrum caspase inhibitor, completely suppresses TGF-beta1-induced apoptosis, but unexpectedly does not inhibit TGF-beta1-induced PARP cleavage. Furthermore, Z-VAD-fmk treatment is able to completely inhibit the daunorubicin-induced apoptosis in A-431 cells, but only slightly blocks the daunorubicin-induced PARP cleavage, whereas BD-fmk can inhibit both daunorubicin-induced apoptosis and PARP cleavage completely. In addition, we observed that both TGF-beta1-induced apoptosis and PARP degradation in AML-12 cells can be completely blocked by inhibiting the protein synthesis with cycloheximide. These results demonstrate for the first time that TGF-beta1-induced caspase-dependent apoptosis is associated with caspase-independent PARP cleavage that requires the TGF-beta1-induced synthesis of new proteins. The results indicate that caspase-3 is not a major caspase involved in TGF-beta1-induced apoptosis in AML-12 cells, and is not required for apoptosis-associated DNA fragmentation. The results also suggest that PARP cleavage may occur as an independent event that can be disassociated with cell apoptosis.  相似文献   

2.
Poly (ADP-ribose) polymerase cleavage monitored in situ in apoptotic cells   总被引:5,自引:0,他引:5  
During apoptosis, the activation of a family of cysteine proteases, or caspases, results in proteolytic cleavage of numerous substrates. Antibody probes specific for neoepitopes on protein fragments generated by caspase cleavage provide a means to monitor caspase activity at the level of the individual cell. Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a well-known substrate for caspase-3 cleavage during apoptosis. Its cleavage is considered to be a hallmark of apoptosis. Here, we demonstrate that an affinity-purified polyclonal antibody to the p85 fragment of PARP is specific for apoptotic cells. Western blots show that the antibody recognizes the 85-kDa (p85) fragment of PARP but not full-length PARP. We demonstrate a time course of PARP cleavage and DNA fragmentation in situ using the PARP p85 fragment antibody and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) in Jurkat cells treated with anti-Fas. Furthermore, our results indicate that the p85 fragment of PARP resulting from caspase cleavage during apoptosis is rapidly localized outside the condensed chromatin but not in the cytoplasm.  相似文献   

3.
Activation of poly(ADP-ribose) polymerase (PARP) by DNA breaks catalyzes poly(ADP-ribosyl)ation and results in depletion of NAD+ and ATP, which is thought to induce necrosis. Proteolytic cleavage of PARP by caspases is a hallmark of apoptosis. To investigate whether PARP cleavage plays a role in apoptosis and in the decision of cells to undergo apoptosis or necrosis, we introduced a point mutation into the cleavage site (DEVD) of PARP that renders the protein resistant to caspase cleavage in vitro and in vivo. Here, we show that after treatment with tumor necrosis factor alpha, fibroblasts expressing this caspase-resistant PARP exhibited an accelerated cell death. This enhanced cell death is attributable to the induction of necrosis and an increased apoptosis and was coupled with depletion of NAD+ and ATP that occurred only in cells expressing caspase-resistant PARP. The PARP inhibitor 3-aminobenzamide prevented the NAD+ drop and concomitantly inhibited necrosis and the elevated apoptosis. These data indicate that this accelerated cell death is due to NAD+ depletion, a mechanism known to kill various cell types, caused by activation of uncleaved PARP after DNA fragmentation. The present study demonstrates that PARP cleavage prevents induction of necrosis during apoptosis and ensures appropriate execution of caspase-mediated programmed cell death.  相似文献   

4.
Recent studies have implicated the role of autophagy in brain ischemia pathophysiology. However, it remains unclear whether autophagy activation is protective or detrimental to astrocytes undergoing ischemic stress. This study evaluated the influence of ischemia-induced autophagy on cell death and the course of intrinsic and extrinsic apoptosis in primary cultures of rat cortical astrocytes exposed to combined oxygen-glucose deprivation (OGD). The role of autophagy was assessed by pharmacological inhibition with 3-methyladenine (3-MA). Cell viability was evaluated by measuring LDH release and through the use of the alamarBlue Assay. Apoptosis and necrosis were determined by fluorescence microscopy after Hoechst 33,342 and propidium iodide staining, respectively. The levels of apoptosis-related proteins were analyzed by immunoblotting. The downregulation of autophagy during OGD resulted in decreased cell viability and time-dependent changes in levels of apoptosis and necrosis. After short-term OGD (1, 4 h), cells treated with 3-MA showed higher level of cleaved caspase 3 compared with control cells. This result was consistent with an evaluation of apoptotic cell number by fluorescence microscopy. However, after prolonged exposure to OGD (8, 24 h), the number of apoptotic astrocytes (microscopically evaluated) did not differ or was even lower (as marked by caspase 3) in the presence of the autophagy inhibitor in comparison to the control. A higher level of necrosis was observed in 3-MA-treated cells compared to non-treated cells after 24 h OGD. The downregulation of autophagy caused time-dependent changes in both extrinsic (cleaved caspase 8, TNFα) and intrinsic (cleaved caspase 9) apoptotic pathways. Our results strongly indicate that the activation of autophagy in astrocytes undergoing ischemic stress is an adaptive mechanism, which allows for longer cell survival by delaying the initiation of apoptosis and necrosis.  相似文献   

5.
目的:研究氨磷汀对体外培养的神经元样细胞的缺血再灌注损伤的保护作用,为其最终用于临床脑缺血的治疗打下基础。方法:体外培养的PC12细胞氧糖剥夺4h后复氧复糖,给予不同浓度的氨磷汀处理,20h后镜下观察细胞形态学变化,用MTT和LDH检测细胞活力和损伤情况,免疫荧光染色观察凋亡细胞,流式细胞仪计数凋亡细胞的比例。结果:高浓度氨磷汀对正常PC12细胞活力有抑制作用(P〈0.05),而低浓度则无。氨磷汀可以提高缺血再灌注损伤PC12细胞活力(P〈0.05),减少LDH释放(P〈0.05),保护细胞正常形态,抑制细胞凋亡(P〈0.05)。结论:氨磷汀对氧糖剥夺引起的神经元样细胞的缺血再灌注损伤具有保护作用。  相似文献   

6.
Objective: Kaempferol 3‐O‐β‐isorhamninoside (K3O‐ir) and rhamnocitrin 3‐O‐β‐isorhamninoside (R3O‐ir) from Rhamnus alaternus L leaves are investigated for their ability to induce apoptosis in human lymphoblastoid cells. We have attempted to characterize apoptotic pathway activated by these two flavonoids. Material and methods: Apoptosis of the human TK6 lymphoblastoid cell line was detected by DNA fragmentation, PARP cleavage and by evaluating caspase activity. Results: Apoptosis was observed after 24‐ and 48‐h incubation of the cells with the tested compounds. DNA fragmentation was observed after treatment with flavonoids; this was confirmed by demonstration of PARP cleavage. Caspase‐3 and caspase‐8 activities were induced by both K3O‐ir and R3O‐ir flavonoids showing highest activity with compound concentration of 400 μg/ml. Conclusion: We have demonstrated that K3O‐ir and R3O‐ir induce apoptosis in human lymphoblastoid cells by the extrinsic pathway of apoptosis.  相似文献   

7.
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox.  相似文献   

8.
目的:研究氨磷汀对体外培养的神经元样细胞的缺血再灌注损伤的保护作用,为其最终用于临床脑缺血的治疗打下基础。方法:体外培养的PC12细胞氧糖剥夺4h后复氧复糖,给予不同浓度的氨磷汀处理,20h后镜下观察细胞形态学变化,用MTT和LDH检测细胞活力和损伤情况,免疫荧光染色观察凋亡细胞,流式细胞仪计数凋亡细胞的比例。结果:高浓度氨磷汀对正常PC12细胞活力有抑制作用(P<0.05),而低浓度则无。氨磷汀可以提高缺血再灌注损伤PC12细胞活力(P<0.05),减少LDH释放(P<0.05),保护细胞正常形态,抑制细胞凋亡(P<0.05)。结论:氨磷汀对氧糖剥夺引起的神经元样细胞的缺血再灌注损伤具有保护作用。  相似文献   

9.
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a target of caspases during apoptosis: its cleavage onto 89- and 24-kDa fragments is considered to be a hallmark of the apoptotic mode of cell death. Another hallmark is the activation of endonuclease which targets internucleosomal DNA. The aim of the present study was to reveal cell cycle phase specificity as well as the temporal and sequence relationships of PARP cleavage vis-à-vis DNA fragmentation in two model systems of apoptosis, one induced by DNA damage via cell treatment with camptothecin (CPT) (mitochondria-induced pathway) and another by the cytotoxic ligand tumor necrosis factor alpha (TNF-alpha) (cell surface death receptor pathway). PARP cleavage was detected immunocytochemically using antibody which recognizes its 89-kDa fragment (PARP p89) while DNA fragmentation was assayed by in situ labeling of DNA strand breaks. The frequency and extent of PARP cleavage as well as DNA fragmentation were measured by mutiparameter flow and laser scanning cytometry. PARP cleavage, selective to S phase cells, was detected 90 min after administration of CPT. PARP cleavage in the cells treated with TNF-alpha was not selective to any cell cycle phase and was seen already after 30 min. DNA fragmentation trailed PARP cleavage by about 30 min and showed a similar pattern of cell cycle specificity. PARP p89 was present in nuclear chromatin but at least in the early phase of apoptosis it did not colocalize with DNA strand breaks. The rate of cleavage of PARP molecules in individual cells whether induced by CPT or TNF-alpha was rapid as reflected by the paucity of cells with a mixture of cleaved and noncleaved PARP molecules. In contrast, DNA fragmentation proceeded stepwise before reaching the maximal number of DNA strand breaks. Although time windows for PARP cleavage vs DNA fragmentation were different at early stages of apoptosis, a good overall correlation between the cytometric assays of apoptotic cells identification based on these events was observed in both CPT- and TNF-alpha-treated cultures.  相似文献   

10.
Objective: Fractionation of ethyl acetate extract (EA) obtained from Nitraria retusa leaves was assessed using different methods of chromatography, and isorhamnetin3‐O‐rutinoside (I3‐O‐R) was isolated from this extract. Its structure was determined using data obtained from 1H and 13C NMR spectra, as well as by various correlation experiments (COSY, HMQC and HMBC). Both EA extract and I3‐O‐R were investigated for their ability to induce apoptosis in human chronic myelogenous erythroleukaemia cells (K562). Materials and methods: Apoptosis of cells from the K562 line was detected by DNA fragmentation, PARP cleavage and by evaluating activities of caspases 3 and 8. Results: Apoptosis, revealed by DNA fragmentation and PARP cleavage, was observed after 48‐h incubation of these human myelogenous erythroleukaemia cells (K562), with the tested products. Likewise, caspase 3 and caspase 8 activities were induced in the presence of the EA extract and I3‐O‐R after 48 h of incubation. Conclusion: Our results strongly suggest the involvement of the extrinsic pathway of apoptosis in cells treated by both the original EA extract and its major component, I3‐O‐R.  相似文献   

11.
N-(2-(1H-indazol-3-yl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-4-chloro-N-methylbenzamide (SMT-A07) is a novel 3-(Indol-2-yl) indazole derivative. The anticancer activities in vitro and the cell apoptosis-induction abilities of SMT-A07 on human leukemia HL60 and NB4 cell lines were investigated in this study. The results of MTT assay showed SMT-A07 was a potential and highly efficient antitumor compound with IC50 values ranging from 0.09 to 1.19 μM in five leukemia cell lines. SMT-A07 treatment for 24 h caused the increment of apoptosis rate from 6.88 to 49.72% in HL60 cells and from 8.72 to 56.28% in NB4 cells by flow cytometry analysis. Agarose gel electrophoresis showed DNA fragmentation that appeared after cells were exposed to SMT-A07. After SMT-A07 incubation, DAPI staining revealed the presence of DNA fragmentation, and perinuclear apoptotic body. SMT-A07 also resulted in a loss of ΔΨm in both HL60 and NB4 cells by JC-1 staining. Moreover, apoptosis-related proteins were examined by western blotting to explore the mechanism of its cytotoxicity. SMT-A07 exposure caused down-regulation and cleavage of procaspase-8, procaspase-3, Bid, PARP and up-regulation of cleaved caspase-8, cleaved caspase-3, PARP (Cleaved Fragment). In addition, the presence of pan-caspase inhibitor BOC-D-FMK prevented cells from caspase-3 activation, PARP cleavage, and subsequent apoptosis. Our study demonstrates that SMT-A07 displays an apparent antitumor activity with extensive anti-leukemia spectrum, and SMT-A07 can induce the apoptosis of HL60 and NB4 cells activation of the caspase cascade, which deserves further development.  相似文献   

12.
Abstract : It is well known that caspases are produced as proforms, which are proteolytically cleaved and activated during apoptosis or programmed cell death. We report here that caspases are activated during apoptosis by treatment with NOC18, a nitric oxide (NO) donor. Our present experiments have examined the way in which NO induces neuronal cell death, using a new type of NO donor that spontaneously releases only NO without enzymatic metabolism. NOC18 induced apoptosis in human neuroblastoma SH-SY5Y cells in a concentration-and time-dependent manner as estimated by DNA fragmentation assay, FACScan analysis, and nuclear morphology. Oxyhemoglobin, an NO trapper, suppressed NOC18-triggered DNA fragmentation, indicating that NO from NOC18 is a real activator in this study. Upon the induction of apoptosis, an increase in caspase-3-like protease activity, but not caspase-1, was observed. Procaspase-2 protein, an inactive form of caspase-2, decreased dramatically. In addition, NOC18 also resulted in poly (ADP-ribose) polymerase (PARP) cleavage, yielding an 85-kDa fragment typical of caspase activity. Oxyhemoglobin blocked the decrease of procaspase-2 and the cleavage of PARP by NOC18 in a concentration-dependent manner. Moreover, NO elicited the release of cytochrome c into the cytosol during apoptosis. These results suggest that both stimulation of caspase activity and cytochrome c release are partly involved in NO-induced neuronal apoptosis.  相似文献   

13.
Mild hypothermia (MH) is thought to be one of the most effective therapeutic methods to treat hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). However, its precise mechanisms remain unclear. In this research, hippocampal neurons were cultured and treated with mild hypothermia and Ac-DEVD-CHO after oxygen-glucose deprivation (OGD). The activity of caspase-3 was detected, in order to find the precise concentration of Ac-DEVD-CHO with the same protective role in OGD injury as MH treatment. Western blot and immunofluorescence staining were conducted to analyze the effects of MH and Ac-DEVD-CHO on the expressions of caspase-3, caspase-8, and PARP. The neuronal morphology was observed with an optical microscope. The lactic acid dehydrogenase (LDH) release rate, neuronal viability, and apoptotic rate were also detected. We found that MH (32 °C) and Ac-DEVD-CHO (5.96 μMol/L) had equal effects on blocking the activation of caspase-3 and the OGD-induced cleavage of PARP, but neither had any effect on the activation of caspase-8, which goes on to activate caspase-3 in the apoptotic pathway. Meanwhile, both MH and Ac-DEVD-CHO had similar effects in protecting cell morphology, reducing LDH release, and inhibiting OGD-induced apoptosis in neurons. They also similarly improved neuronal viability after OGD. In conclusion, caspase-3 serves as a key intervention point of the key modulation site or regulatory region in MH treatment that protects neuronal apoptosis against OGD injury. Inhibiting the expression of caspase-3 had a protective effect against OGD injury in MH treatment, and caspase-3 activation could be applied to evaluate the neuroprotective effectiveness of MH on HIE.  相似文献   

14.
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type.  相似文献   

15.
Sodium butyrate induced keratinocyte apoptosis   总被引:1,自引:0,他引:1  
Apoptosis of keratinocytes is a key mechanism required for epidermal homeostasis and the renewal of damaged cells. Its dysregulation has been implicated in many skin diseases including cancer and hyperproliferative disorders. In the present study, the effect of sodium butyrate, a histone deacetylase inhibitor, on keratinocyte apoptosis was investigated using the HaCaT human keratinocyte cell line. Sodium butyrate induced morphological changes associated with apoptosis and nuclear fragmentation of HaCaTs. Annexin V staining demonstrated that sodium butyrate induced apoptosis in a dose and time-dependent manner with 50% of HaCaTs apoptotic after exposure to 0.8 mg/ml sodium butyrate for 24 h. Apoptosis was associated with upregulation of cell surface expression of the death receptor Fas and activation of the extrinsic caspase pathway, with induction of caspase 8 activity peaking after 8 h. Caspase 3 activity peaked after 24 h and was associated with cleavage of the caspase 3 substrate, poly (ADP-ribose) polymerase (PARP). The intrinsic caspase pathway was not activated as caspase 9 activity was not detected, and there was no change in the expression of terminal differentiation markers keratin 10 and involucrin following sodium butyrate treatment. Together these results indicate that sodium butyrate is a potent inducer of Fas associated apoptosis via caspase activation in HaCaT keratinocytes, an effect that is independent of the induction of terminal differentiation.  相似文献   

16.
Autophagy is usually up‐regulated to provide more ATP in response to starvation or OGD (oxygen‐glucose deprivation), but the relationship between autophagy and ATP, [Ca2+]i (intracellular free Ca2+ concentration) or MMP (mitochondrial membrane potential) during reoxygenation is not yet fully clear. The role of autophagy is unknown in PC12 cells subjected to 2 h OGD with different time points of reoxygenation. In the present study, we showed that Beclin‐1 was up‐regulated beginning at 0 h reoxygenation peaking at 24 h and lasting for 48 h. Cell viability was decreased from 0 to 48 h reoxygenation, reaching its minimum at 10 h reoxygenation. ATP was decreased from 0 to 10 h reoxygenation, reaching its minimum at 4 h reoxygenation. A significant negative correlation was observed between ATP and Beclin‐1 (r = ?0.61, P<0.05) at 0 h reoxygenation, but ATP was not significant related (r = 0.24, P>0.05) to Beclin‐1 at 24 h reoxygenation. Besides, Nimodipine, a calcium antagonist, significantly reduced [Ca2+]i and Beclin‐1, but increased MMP in OGD/R‐treated cells. At 24 h reoxygenation, Beclin‐1 expression reached its maximum, cell viability continued to increase, and ATP was higher than that before OGD. These results suggest that energy metabolism dysfunction can induce autophagy during OGD in PC12 cells. Increased [Ca2+]i and decreased MMP may induce autophagy during reoxygenation in PC12 cells. Autophagy may be a protective effect on PC12 cells treated with different time points of reoxygenation after 2 h OGD.  相似文献   

17.
Tian Rh  Zhang GY  Yan CH  Dai YR 《FEBS letters》2000,474(1):11-15
The cleavage of poly(ADP-ribose) polymerase (PARP) by caspase (casp)-3 is an essential link in the apoptotic pathway in animal cells. In plant cells, however, there is no authentic evidence for the similar role that PARP may play during apoptosis. Using a heat shock (HS)-induced apoptosis system of tobacco cells, we found that immediately after a 4 h heat treatment, PARP was cleaved to form an 89 kDa signature fragment, while DNA laddering appeared only after a 20 h recovery following the HS. An activation of casp-3-like protease was also observed. The results suggest that apoptosis in plants and animals may share common mechanisms. On the other hand, when cells were preincubated with 4 mM 3-aminobenzamide or 2-8 mM nicotinamide, the specific inhibitors of PARP, before HS treatment, apoptotic cell death was reduced significantly. Our results thus imply that PARP may also be involved in apoptosis in a different way from the casp-related events.  相似文献   

18.
Hydroxysafflor yellow A (HSYA) was reported neuroprotective under several ischemic models in vivo. In this study, the direct effect of HSYA against oxygen–glucose deprivation (OGD) inducing acute neuronal injury and the underling mechanisms in vitro were investigated. Four-hour oxygen and glucose deprivation (OGD) followed by 20 h reperfusion (adding back oxygen and glucose, OGD-R) was used to induce in vitro ischemia reperfusion injury in differentiated rat pheochromocytoma PC12 cells. HSYA (1, 10, and 100 μmol/l) was added to the cultures 30 min prior to the ischemic insult and was present during OGD and reoxygenation phases. The survival rate of PC12 cells was detected by MTT assay. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were elevated by biochemical method. Hoechst 33258 staining and flow cytometric analysis were used to detect apoptosis; western blotting was used to detect the expression of Bcl-2, Bax, and Cytochrome C protein. The activity of caspase-3 was assessed by colorimetry. HSYA concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-R. Moreover, the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol and the consequent activation of caspase-3 were reversed by HSYA in a dose-dependent manner. These results suggest that apoptosis is an important characteristic of OGD-R-induced PC 12 death and that treatment of PC12 cells with HSYA can block OGD-R-induced apoptosis through suppression of intracellular oxidative stress and mitochondria dependent caspase cascade.  相似文献   

19.
4-苯基丁酸钠(4-phenylbutyric acid,4-PBA)是协助内质网中蛋白质转录后修饰和折叠的分子伴侣,故可减轻非折叠蛋白反应(unfolded protein response,UPR)及其介导的细胞凋亡。既往研究表明,4-PBA可以减轻脑组织的缺血性损伤,但采用原代皮层神经元构建氧糖剥夺/再灌注(oxygen glucose deprivation/reoxygenation, OGD/R)损伤模型,来研究4-PBA对神经元损伤的保护作用及其机制尚未见报道。本文采用原代培养的皮层神经元OGD/R损伤模型,同时给予4-PBA处理,探讨4-PBA对OGD/R诱导的神经元内质网应激(endoplasmic reticulum stress,ERS)的作用及其机制。分别采用MTT、LDH和Hoechst 33342染色法检测神经元存活率、细胞膜完整性和细胞凋亡情况。Western印迹检测ERS标志物葡萄糖调节蛋白78 (glucose regulated protein 78,GRP78),以及肌醇必需酶1(inositol requiring enzyme 1, IRE1)通路相关蛋白质的表达。Western印迹结果显示,在OGD/R后0~48 h,GRP78的表达较对照组明显升高。MTT、LDH漏出率和Hoechst 33342染色法检测显示,4-PBA显著改善OGD/R所导致的神经元存活率下降、LDH漏出率升高和细胞凋亡增加,且具有明显的剂量依赖性。通过Western印迹检测发现,4-PBA显著逆转OGD/R所致GRP78蛋白表达水平的上调。此外,对肌醇必需酶1通路相关蛋白质的检测显示,4-PBA下调氧糖剥夺/再灌注组神经元p IRE1和p JNK的表达,增加抗凋亡蛋白Bcl 2表达。上述研究结果表明,4-PBA在氧糖剥夺/再灌注情况下对神经元具有保护作用,该保护作用可能是通过抑制肌醇必需酶1信号通路介导的非折叠蛋白反应和内质网应激实现的。  相似文献   

20.
Steinritz D  Emmler J  Hintz M  Worek F  Kreppel H  Szinicz L  Kehe K 《Life sciences》2007,80(24-25):2199-2201
The chemical warfare agent sulfur mustard (SM) is a strong alkylating agent that leads to erythema and ulceration of the human skin several hours after exposure. Although SM has been intensively investigated, the cellular mechanisms leading to cell damage remain unclear. Apoptosis, necrosis and direct cell damage are discussed. In this study we investigated apoptotic cell death in pulmonary A549 cells exposed to SM (30-1000 microM, 30 min). 24 h after SM exposure DNA breaks were stained with the TUNEL method. Additionally, A549 cells were lysed and cellular protein was transferred to SDS page and blotted. Whole PARP as well as PARP cleavage into the p89 fragment, an indicator of apoptosis, were detected by specific antibodies. SM concentration dependent increase in TUNEL positive cells and PARP cleavage showed that SM is an inducer of apoptosis. It has been previously suggested that AChE is activated during apoptotic processes and may be involved in apoptosis regulation. Therefore, we examined AChE activity in A549 cells upon induction of apoptosis by SM (100-500 microM). Increased AChE activity was found in SM treated A549 cell cultures examined as determined by the Ellman's assay and by western blot. AChE activity showed a strong correlation with TUNEL positive cells. However, the broad caspase inhibitor zVAD and the PARP-inhibitor 3-aminobenzamide had no protective effect on A459 cells measured with AChE activity and frequency of TUNEL positive cells. In summary, our studies demonstrate that AChE activity may be a potential marker of apoptosis in A549 cells after SM injury. To what extent AChE is involved in apoptosis regulation during SM poisoning has to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号